(0) Obligation:

Clauses:

m(X, 0, Z) :- ','(!, =(Z, X)).
m(0, Y, Z) :- ','(!, =(Z, 0)).
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(X), X).
q(X, Y, Z) :- m(X, Y, Z).
q(X, Y, Z).
=(X, X).

Query: q(g,g,a)

(1) BuiltinConflictTransformerProof (BOTH BOUNDS(ID, ID) transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

m(X, 0, Z) :- ','(!, user_defined_=(Z, X)).
m(0, Y, Z) :- ','(!, user_defined_=(Z, 0)).
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(X), X).
q(X, Y, Z) :- m(X, Y, Z).
q(X, Y, Z).
user_defined_=(X, X).

Query: q(g,g,a)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f3_in(z0, z1), z0, z1)
U1(f3_out1, z0, z1) → f1_out1
U1(f3_out2, z0, z1) → f1_out1
f13_in(z0, 0) → f13_out1(z0)
f13_in(0, z0) → f13_out1(0)
f13_in(s(z0), s(z1)) → U2(f13_in(z0, z1), s(z0), s(z1))
U2(f13_out1(z0), s(z1), s(z2)) → f13_out1(z0)
f6_in(z0, z1) → U3(f13_in(z0, z1), z0, z1)
U3(f13_out1(z0), z1, z2) → f6_out1
f8_in(z0, z1) → f8_out1
f3_in(z0, z1) → U4(f6_in(z0, z1), f8_in(z0, z1), z0, z1)
U4(f6_out1, z0, z1, z2) → f3_out1
U4(z0, f8_out1, z1, z2) → f3_out2
Tuples:

F1_IN(z0, z1) → c(U1'(f3_in(z0, z1), z0, z1), F3_IN(z0, z1))
F13_IN(s(z0), s(z1)) → c5(U2'(f13_in(z0, z1), s(z0), s(z1)), F13_IN(z0, z1))
F6_IN(z0, z1) → c7(U3'(f13_in(z0, z1), z0, z1), F13_IN(z0, z1))
F3_IN(z0, z1) → c10(U4'(f6_in(z0, z1), f8_in(z0, z1), z0, z1), F6_IN(z0, z1), F8_IN(z0, z1))
S tuples:

F1_IN(z0, z1) → c(U1'(f3_in(z0, z1), z0, z1), F3_IN(z0, z1))
F13_IN(s(z0), s(z1)) → c5(U2'(f13_in(z0, z1), s(z0), s(z1)), F13_IN(z0, z1))
F6_IN(z0, z1) → c7(U3'(f13_in(z0, z1), z0, z1), F13_IN(z0, z1))
F3_IN(z0, z1) → c10(U4'(f6_in(z0, z1), f8_in(z0, z1), z0, z1), F6_IN(z0, z1), F8_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f13_in, U2, f6_in, U3, f8_in, f3_in, U4

Defined Pair Symbols:

F1_IN, F13_IN, F6_IN, F3_IN

Compound Symbols:

c, c5, c7, c10

(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f3_in(z0, z1), z0, z1)
U1(f3_out1, z0, z1) → f1_out1
U1(f3_out2, z0, z1) → f1_out1
f13_in(z0, 0) → f13_out1(z0)
f13_in(0, z0) → f13_out1(0)
f13_in(s(z0), s(z1)) → U2(f13_in(z0, z1), s(z0), s(z1))
U2(f13_out1(z0), s(z1), s(z2)) → f13_out1(z0)
f6_in(z0, z1) → U3(f13_in(z0, z1), z0, z1)
U3(f13_out1(z0), z1, z2) → f6_out1
f8_in(z0, z1) → f8_out1
f3_in(z0, z1) → U4(f6_in(z0, z1), f8_in(z0, z1), z0, z1)
U4(f6_out1, z0, z1, z2) → f3_out1
U4(z0, f8_out1, z1, z2) → f3_out2
Tuples:

F13_IN(s(z0), s(z1)) → c5(U2'(f13_in(z0, z1), s(z0), s(z1)), F13_IN(z0, z1))
F1_IN(z0, z1) → c1(U1'(f3_in(z0, z1), z0, z1))
F1_IN(z0, z1) → c1(F3_IN(z0, z1))
F6_IN(z0, z1) → c1(U3'(f13_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F13_IN(z0, z1))
F3_IN(z0, z1) → c1(U4'(f6_in(z0, z1), f8_in(z0, z1), z0, z1))
F3_IN(z0, z1) → c1(F6_IN(z0, z1))
F3_IN(z0, z1) → c1(F8_IN(z0, z1))
S tuples:

F13_IN(s(z0), s(z1)) → c5(U2'(f13_in(z0, z1), s(z0), s(z1)), F13_IN(z0, z1))
F1_IN(z0, z1) → c1(U1'(f3_in(z0, z1), z0, z1))
F1_IN(z0, z1) → c1(F3_IN(z0, z1))
F6_IN(z0, z1) → c1(U3'(f13_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F13_IN(z0, z1))
F3_IN(z0, z1) → c1(U4'(f6_in(z0, z1), f8_in(z0, z1), z0, z1))
F3_IN(z0, z1) → c1(F6_IN(z0, z1))
F3_IN(z0, z1) → c1(F8_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f13_in, U2, f6_in, U3, f8_in, f3_in, U4

Defined Pair Symbols:

F13_IN, F1_IN, F6_IN, F3_IN

Compound Symbols:

c5, c1

(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 5 trailing tuple parts

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f3_in(z0, z1), z0, z1)
U1(f3_out1, z0, z1) → f1_out1
U1(f3_out2, z0, z1) → f1_out1
f13_in(z0, 0) → f13_out1(z0)
f13_in(0, z0) → f13_out1(0)
f13_in(s(z0), s(z1)) → U2(f13_in(z0, z1), s(z0), s(z1))
U2(f13_out1(z0), s(z1), s(z2)) → f13_out1(z0)
f6_in(z0, z1) → U3(f13_in(z0, z1), z0, z1)
U3(f13_out1(z0), z1, z2) → f6_out1
f8_in(z0, z1) → f8_out1
f3_in(z0, z1) → U4(f6_in(z0, z1), f8_in(z0, z1), z0, z1)
U4(f6_out1, z0, z1, z2) → f3_out1
U4(z0, f8_out1, z1, z2) → f3_out2
Tuples:

F1_IN(z0, z1) → c1(F3_IN(z0, z1))
F6_IN(z0, z1) → c1(F13_IN(z0, z1))
F3_IN(z0, z1) → c1(F6_IN(z0, z1))
F13_IN(s(z0), s(z1)) → c5(F13_IN(z0, z1))
F1_IN(z0, z1) → c1
F6_IN(z0, z1) → c1
F3_IN(z0, z1) → c1
S tuples:

F1_IN(z0, z1) → c1(F3_IN(z0, z1))
F6_IN(z0, z1) → c1(F13_IN(z0, z1))
F3_IN(z0, z1) → c1(F6_IN(z0, z1))
F13_IN(s(z0), s(z1)) → c5(F13_IN(z0, z1))
F1_IN(z0, z1) → c1
F6_IN(z0, z1) → c1
F3_IN(z0, z1) → c1
K tuples:none
Defined Rule Symbols:

f1_in, U1, f13_in, U2, f6_in, U3, f8_in, f3_in, U4

Defined Pair Symbols:

F1_IN, F6_IN, F3_IN, F13_IN

Compound Symbols:

c1, c5, c1

(9) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_IN(z0, z1) → c1(F3_IN(z0, z1))
F3_IN(z0, z1) → c1(F6_IN(z0, z1))
F1_IN(z0, z1) → c1
F6_IN(z0, z1) → c1
F3_IN(z0, z1) → c1
F3_IN(z0, z1) → c1
F3_IN(z0, z1) → c1(F6_IN(z0, z1))
F3_IN(z0, z1) → c1
F3_IN(z0, z1) → c1
F6_IN(z0, z1) → c1(F13_IN(z0, z1))
F6_IN(z0, z1) → c1

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f3_in(z0, z1), z0, z1)
U1(f3_out1, z0, z1) → f1_out1
U1(f3_out2, z0, z1) → f1_out1
f13_in(z0, 0) → f13_out1(z0)
f13_in(0, z0) → f13_out1(0)
f13_in(s(z0), s(z1)) → U2(f13_in(z0, z1), s(z0), s(z1))
U2(f13_out1(z0), s(z1), s(z2)) → f13_out1(z0)
f6_in(z0, z1) → U3(f13_in(z0, z1), z0, z1)
U3(f13_out1(z0), z1, z2) → f6_out1
f8_in(z0, z1) → f8_out1
f3_in(z0, z1) → U4(f6_in(z0, z1), f8_in(z0, z1), z0, z1)
U4(f6_out1, z0, z1, z2) → f3_out1
U4(z0, f8_out1, z1, z2) → f3_out2
Tuples:

F1_IN(z0, z1) → c1(F3_IN(z0, z1))
F6_IN(z0, z1) → c1(F13_IN(z0, z1))
F3_IN(z0, z1) → c1(F6_IN(z0, z1))
F13_IN(s(z0), s(z1)) → c5(F13_IN(z0, z1))
F1_IN(z0, z1) → c1
F6_IN(z0, z1) → c1
F3_IN(z0, z1) → c1
S tuples:

F13_IN(s(z0), s(z1)) → c5(F13_IN(z0, z1))
K tuples:

F1_IN(z0, z1) → c1(F3_IN(z0, z1))
F3_IN(z0, z1) → c1(F6_IN(z0, z1))
F1_IN(z0, z1) → c1
F6_IN(z0, z1) → c1
F3_IN(z0, z1) → c1
F6_IN(z0, z1) → c1(F13_IN(z0, z1))
Defined Rule Symbols:

f1_in, U1, f13_in, U2, f6_in, U3, f8_in, f3_in, U4

Defined Pair Symbols:

F1_IN, F6_IN, F3_IN, F13_IN

Compound Symbols:

c1, c5, c1

(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F13_IN(s(z0), s(z1)) → c5(F13_IN(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(z0, z1) → c1(F3_IN(z0, z1))
F6_IN(z0, z1) → c1(F13_IN(z0, z1))
F3_IN(z0, z1) → c1(F6_IN(z0, z1))
F13_IN(s(z0), s(z1)) → c5(F13_IN(z0, z1))
F1_IN(z0, z1) → c1
F6_IN(z0, z1) → c1
F3_IN(z0, z1) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F13_IN(x1, x2)) = [1] + x1   
POL(F1_IN(x1, x2)) = [3] + x1 + [3]x2   
POL(F3_IN(x1, x2)) = [2] + x1 + [2]x2   
POL(F6_IN(x1, x2)) = [2] + x1 + x2   
POL(c1) = 0   
POL(c1(x1)) = x1   
POL(c5(x1)) = x1   
POL(s(x1)) = [1] + x1   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f3_in(z0, z1), z0, z1)
U1(f3_out1, z0, z1) → f1_out1
U1(f3_out2, z0, z1) → f1_out1
f13_in(z0, 0) → f13_out1(z0)
f13_in(0, z0) → f13_out1(0)
f13_in(s(z0), s(z1)) → U2(f13_in(z0, z1), s(z0), s(z1))
U2(f13_out1(z0), s(z1), s(z2)) → f13_out1(z0)
f6_in(z0, z1) → U3(f13_in(z0, z1), z0, z1)
U3(f13_out1(z0), z1, z2) → f6_out1
f8_in(z0, z1) → f8_out1
f3_in(z0, z1) → U4(f6_in(z0, z1), f8_in(z0, z1), z0, z1)
U4(f6_out1, z0, z1, z2) → f3_out1
U4(z0, f8_out1, z1, z2) → f3_out2
Tuples:

F1_IN(z0, z1) → c1(F3_IN(z0, z1))
F6_IN(z0, z1) → c1(F13_IN(z0, z1))
F3_IN(z0, z1) → c1(F6_IN(z0, z1))
F13_IN(s(z0), s(z1)) → c5(F13_IN(z0, z1))
F1_IN(z0, z1) → c1
F6_IN(z0, z1) → c1
F3_IN(z0, z1) → c1
S tuples:none
K tuples:

F1_IN(z0, z1) → c1(F3_IN(z0, z1))
F3_IN(z0, z1) → c1(F6_IN(z0, z1))
F1_IN(z0, z1) → c1
F6_IN(z0, z1) → c1
F3_IN(z0, z1) → c1
F6_IN(z0, z1) → c1(F13_IN(z0, z1))
F13_IN(s(z0), s(z1)) → c5(F13_IN(z0, z1))
Defined Rule Symbols:

f1_in, U1, f13_in, U2, f6_in, U3, f8_in, f3_in, U4

Defined Pair Symbols:

F1_IN, F6_IN, F3_IN, F13_IN

Compound Symbols:

c1, c5, c1

(13) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(14) BOUNDS(O(1), O(1))

(15) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1
f2_in(0, z0) → f2_out1
f2_in(z0, z1) → U1(f29_in(z0, z1), z0, z1)
U1(f29_out1(z0), z1, z2) → f2_out1
U1(f29_out3, z0, z1) → f2_out1
f69_in(z0, 0) → f69_out1(z0)
f69_in(0, z0) → f69_out1(0)
f69_in(s(z0), s(z1)) → U2(f69_in(z0, z1), s(z0), s(z1))
U2(f69_out1(z0), s(z1), s(z2)) → f69_out1(z0)
f51_in(s(z0), s(z1)) → U3(f69_in(z0, z1), s(z0), s(z1))
U3(f69_out1(z0), s(z1), s(z2)) → f51_out1(z0)
f52_in(z0, z1) → f52_out2
f29_in(z0, z1) → U4(f51_in(z0, z1), f52_in(z0, z1), z0, z1)
U4(f51_out1(z0), z1, z2, z3) → f29_out1(z0)
U4(z0, f52_out2, z1, z2) → f29_out3
Tuples:

F2_IN(z0, z1) → c2(U1'(f29_in(z0, z1), z0, z1), F29_IN(z0, z1))
F69_IN(s(z0), s(z1)) → c7(U2'(f69_in(z0, z1), s(z0), s(z1)), F69_IN(z0, z1))
F51_IN(s(z0), s(z1)) → c9(U3'(f69_in(z0, z1), s(z0), s(z1)), F69_IN(z0, z1))
F29_IN(z0, z1) → c12(U4'(f51_in(z0, z1), f52_in(z0, z1), z0, z1), F51_IN(z0, z1), F52_IN(z0, z1))
S tuples:

F2_IN(z0, z1) → c2(U1'(f29_in(z0, z1), z0, z1), F29_IN(z0, z1))
F69_IN(s(z0), s(z1)) → c7(U2'(f69_in(z0, z1), s(z0), s(z1)), F69_IN(z0, z1))
F51_IN(s(z0), s(z1)) → c9(U3'(f69_in(z0, z1), s(z0), s(z1)), F69_IN(z0, z1))
F29_IN(z0, z1) → c12(U4'(f51_in(z0, z1), f52_in(z0, z1), z0, z1), F51_IN(z0, z1), F52_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f69_in, U2, f51_in, U3, f52_in, f29_in, U4

Defined Pair Symbols:

F2_IN, F69_IN, F51_IN, F29_IN

Compound Symbols:

c2, c7, c9, c12

(17) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1
f2_in(0, z0) → f2_out1
f2_in(z0, z1) → U1(f29_in(z0, z1), z0, z1)
U1(f29_out1(z0), z1, z2) → f2_out1
U1(f29_out3, z0, z1) → f2_out1
f69_in(z0, 0) → f69_out1(z0)
f69_in(0, z0) → f69_out1(0)
f69_in(s(z0), s(z1)) → U2(f69_in(z0, z1), s(z0), s(z1))
U2(f69_out1(z0), s(z1), s(z2)) → f69_out1(z0)
f51_in(s(z0), s(z1)) → U3(f69_in(z0, z1), s(z0), s(z1))
U3(f69_out1(z0), s(z1), s(z2)) → f51_out1(z0)
f52_in(z0, z1) → f52_out2
f29_in(z0, z1) → U4(f51_in(z0, z1), f52_in(z0, z1), z0, z1)
U4(f51_out1(z0), z1, z2, z3) → f29_out1(z0)
U4(z0, f52_out2, z1, z2) → f29_out3
Tuples:

F69_IN(s(z0), s(z1)) → c7(U2'(f69_in(z0, z1), s(z0), s(z1)), F69_IN(z0, z1))
F2_IN(z0, z1) → c(U1'(f29_in(z0, z1), z0, z1))
F2_IN(z0, z1) → c(F29_IN(z0, z1))
F51_IN(s(z0), s(z1)) → c(U3'(f69_in(z0, z1), s(z0), s(z1)))
F51_IN(s(z0), s(z1)) → c(F69_IN(z0, z1))
F29_IN(z0, z1) → c(U4'(f51_in(z0, z1), f52_in(z0, z1), z0, z1))
F29_IN(z0, z1) → c(F51_IN(z0, z1))
F29_IN(z0, z1) → c(F52_IN(z0, z1))
S tuples:

F69_IN(s(z0), s(z1)) → c7(U2'(f69_in(z0, z1), s(z0), s(z1)), F69_IN(z0, z1))
F2_IN(z0, z1) → c(U1'(f29_in(z0, z1), z0, z1))
F2_IN(z0, z1) → c(F29_IN(z0, z1))
F51_IN(s(z0), s(z1)) → c(U3'(f69_in(z0, z1), s(z0), s(z1)))
F51_IN(s(z0), s(z1)) → c(F69_IN(z0, z1))
F29_IN(z0, z1) → c(U4'(f51_in(z0, z1), f52_in(z0, z1), z0, z1))
F29_IN(z0, z1) → c(F51_IN(z0, z1))
F29_IN(z0, z1) → c(F52_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f69_in, U2, f51_in, U3, f52_in, f29_in, U4

Defined Pair Symbols:

F69_IN, F2_IN, F51_IN, F29_IN

Compound Symbols:

c7, c

(19) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 5 trailing tuple parts

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1
f2_in(0, z0) → f2_out1
f2_in(z0, z1) → U1(f29_in(z0, z1), z0, z1)
U1(f29_out1(z0), z1, z2) → f2_out1
U1(f29_out3, z0, z1) → f2_out1
f69_in(z0, 0) → f69_out1(z0)
f69_in(0, z0) → f69_out1(0)
f69_in(s(z0), s(z1)) → U2(f69_in(z0, z1), s(z0), s(z1))
U2(f69_out1(z0), s(z1), s(z2)) → f69_out1(z0)
f51_in(s(z0), s(z1)) → U3(f69_in(z0, z1), s(z0), s(z1))
U3(f69_out1(z0), s(z1), s(z2)) → f51_out1(z0)
f52_in(z0, z1) → f52_out2
f29_in(z0, z1) → U4(f51_in(z0, z1), f52_in(z0, z1), z0, z1)
U4(f51_out1(z0), z1, z2, z3) → f29_out1(z0)
U4(z0, f52_out2, z1, z2) → f29_out3
Tuples:

F2_IN(z0, z1) → c(F29_IN(z0, z1))
F51_IN(s(z0), s(z1)) → c(F69_IN(z0, z1))
F29_IN(z0, z1) → c(F51_IN(z0, z1))
F69_IN(s(z0), s(z1)) → c7(F69_IN(z0, z1))
F2_IN(z0, z1) → c
F51_IN(s(z0), s(z1)) → c
F29_IN(z0, z1) → c
S tuples:

F2_IN(z0, z1) → c(F29_IN(z0, z1))
F51_IN(s(z0), s(z1)) → c(F69_IN(z0, z1))
F29_IN(z0, z1) → c(F51_IN(z0, z1))
F69_IN(s(z0), s(z1)) → c7(F69_IN(z0, z1))
F2_IN(z0, z1) → c
F51_IN(s(z0), s(z1)) → c
F29_IN(z0, z1) → c
K tuples:none
Defined Rule Symbols:

f2_in, U1, f69_in, U2, f51_in, U3, f52_in, f29_in, U4

Defined Pair Symbols:

F2_IN, F51_IN, F29_IN, F69_IN

Compound Symbols:

c, c7, c

(21) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F2_IN(z0, z1) → c(F29_IN(z0, z1))
F29_IN(z0, z1) → c(F51_IN(z0, z1))
F2_IN(z0, z1) → c
F51_IN(s(z0), s(z1)) → c
F29_IN(z0, z1) → c
F29_IN(z0, z1) → c
F29_IN(z0, z1) → c(F51_IN(z0, z1))
F29_IN(z0, z1) → c
F29_IN(z0, z1) → c
F51_IN(s(z0), s(z1)) → c(F69_IN(z0, z1))
F51_IN(s(z0), s(z1)) → c

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1
f2_in(0, z0) → f2_out1
f2_in(z0, z1) → U1(f29_in(z0, z1), z0, z1)
U1(f29_out1(z0), z1, z2) → f2_out1
U1(f29_out3, z0, z1) → f2_out1
f69_in(z0, 0) → f69_out1(z0)
f69_in(0, z0) → f69_out1(0)
f69_in(s(z0), s(z1)) → U2(f69_in(z0, z1), s(z0), s(z1))
U2(f69_out1(z0), s(z1), s(z2)) → f69_out1(z0)
f51_in(s(z0), s(z1)) → U3(f69_in(z0, z1), s(z0), s(z1))
U3(f69_out1(z0), s(z1), s(z2)) → f51_out1(z0)
f52_in(z0, z1) → f52_out2
f29_in(z0, z1) → U4(f51_in(z0, z1), f52_in(z0, z1), z0, z1)
U4(f51_out1(z0), z1, z2, z3) → f29_out1(z0)
U4(z0, f52_out2, z1, z2) → f29_out3
Tuples:

F2_IN(z0, z1) → c(F29_IN(z0, z1))
F51_IN(s(z0), s(z1)) → c(F69_IN(z0, z1))
F29_IN(z0, z1) → c(F51_IN(z0, z1))
F69_IN(s(z0), s(z1)) → c7(F69_IN(z0, z1))
F2_IN(z0, z1) → c
F51_IN(s(z0), s(z1)) → c
F29_IN(z0, z1) → c
S tuples:

F69_IN(s(z0), s(z1)) → c7(F69_IN(z0, z1))
K tuples:

F2_IN(z0, z1) → c(F29_IN(z0, z1))
F29_IN(z0, z1) → c(F51_IN(z0, z1))
F2_IN(z0, z1) → c
F51_IN(s(z0), s(z1)) → c
F29_IN(z0, z1) → c
F51_IN(s(z0), s(z1)) → c(F69_IN(z0, z1))
Defined Rule Symbols:

f2_in, U1, f69_in, U2, f51_in, U3, f52_in, f29_in, U4

Defined Pair Symbols:

F2_IN, F51_IN, F29_IN, F69_IN

Compound Symbols:

c, c7, c

(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F69_IN(s(z0), s(z1)) → c7(F69_IN(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(z0, z1) → c(F29_IN(z0, z1))
F51_IN(s(z0), s(z1)) → c(F69_IN(z0, z1))
F29_IN(z0, z1) → c(F51_IN(z0, z1))
F69_IN(s(z0), s(z1)) → c7(F69_IN(z0, z1))
F2_IN(z0, z1) → c
F51_IN(s(z0), s(z1)) → c
F29_IN(z0, z1) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F29_IN(x1, x2)) = [1] + x1 + [3]x2   
POL(F2_IN(x1, x2)) = [2] + x1 + [3]x2   
POL(F51_IN(x1, x2)) = x1   
POL(F69_IN(x1, x2)) = [1] + x1   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c7(x1)) = x1   
POL(s(x1)) = [1] + x1   

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1
f2_in(0, z0) → f2_out1
f2_in(z0, z1) → U1(f29_in(z0, z1), z0, z1)
U1(f29_out1(z0), z1, z2) → f2_out1
U1(f29_out3, z0, z1) → f2_out1
f69_in(z0, 0) → f69_out1(z0)
f69_in(0, z0) → f69_out1(0)
f69_in(s(z0), s(z1)) → U2(f69_in(z0, z1), s(z0), s(z1))
U2(f69_out1(z0), s(z1), s(z2)) → f69_out1(z0)
f51_in(s(z0), s(z1)) → U3(f69_in(z0, z1), s(z0), s(z1))
U3(f69_out1(z0), s(z1), s(z2)) → f51_out1(z0)
f52_in(z0, z1) → f52_out2
f29_in(z0, z1) → U4(f51_in(z0, z1), f52_in(z0, z1), z0, z1)
U4(f51_out1(z0), z1, z2, z3) → f29_out1(z0)
U4(z0, f52_out2, z1, z2) → f29_out3
Tuples:

F2_IN(z0, z1) → c(F29_IN(z0, z1))
F51_IN(s(z0), s(z1)) → c(F69_IN(z0, z1))
F29_IN(z0, z1) → c(F51_IN(z0, z1))
F69_IN(s(z0), s(z1)) → c7(F69_IN(z0, z1))
F2_IN(z0, z1) → c
F51_IN(s(z0), s(z1)) → c
F29_IN(z0, z1) → c
S tuples:none
K tuples:

F2_IN(z0, z1) → c(F29_IN(z0, z1))
F29_IN(z0, z1) → c(F51_IN(z0, z1))
F2_IN(z0, z1) → c
F51_IN(s(z0), s(z1)) → c
F29_IN(z0, z1) → c
F51_IN(s(z0), s(z1)) → c(F69_IN(z0, z1))
F69_IN(s(z0), s(z1)) → c7(F69_IN(z0, z1))
Defined Rule Symbols:

f2_in, U1, f69_in, U2, f51_in, U3, f52_in, f29_in, U4

Defined Pair Symbols:

F2_IN, F51_IN, F29_IN, F69_IN

Compound Symbols:

c, c7, c