(0) Obligation:
Clauses:
div(X, 0, Z) :- ','(!, fail).
div(0, Y, Z) :- ','(!, =(Z, 0)).
div(X, Y, s(Z)) :- ','(minus(X, Y, U), div(U, Y, Z)).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
=(X, X).
Query: div(g,g,a)
(1) BuiltinConflictTransformerProof (BOTH BOUNDS(ID, ID) transformation)
Renamed defined predicates conflicting with built-in predicates [PROLOG].
(2) Obligation:
Clauses:
div(X, 0, Z) :- ','(!, fail).
div(0, Y, Z) :- ','(!, user_defined_=(Z, 0)).
div(X, Y, s(Z)) :- ','(minus(X, Y, U), div(U, Y, Z)).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
user_defined_=(X, X).
Query: div(g,g,a)
(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(0, z0) → f2_out1
f2_in(z0, z1) → U1(f27_in(z0, z1), z0, z1)
U1(f27_out1(z0), z1, z2) → f2_out1
f48_in(0, z0) → f48_out1(0)
f48_in(0, 0) → f48_out1(0)
f48_in(z0, 0) → f48_out1(z0)
f48_in(s(z0), s(z1)) → U2(f48_in(z0, z1), s(z0), s(z1))
U2(f48_out1(z0), s(z1), s(z2)) → f48_out1(z0)
f34_in(s(z0), s(z1)) → U3(f48_in(z0, z1), s(z0), s(z1))
U3(f48_out1(z0), s(z1), s(z2)) → f34_out1(z0)
f27_in(z0, z1) → U4(f34_in(z0, z1), z0, z1)
U4(f34_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1, z0, z1, z2) → f27_out1(z2)
Tuples:
F2_IN(z0, z1) → c1(U1'(f27_in(z0, z1), z0, z1), F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(U2'(f48_in(z0, z1), s(z0), s(z1)), F48_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c8(U3'(f48_in(z0, z1), s(z0), s(z1)), F48_IN(z0, z1))
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(U5'(f2_in(z0, z2), z1, z2, z0), F2_IN(z0, z2))
S tuples:
F2_IN(z0, z1) → c1(U1'(f27_in(z0, z1), z0, z1), F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(U2'(f48_in(z0, z1), s(z0), s(z1)), F48_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c8(U3'(f48_in(z0, z1), s(z0), s(z1)), F48_IN(z0, z1))
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(U5'(f2_in(z0, z2), z1, z2, z0), F2_IN(z0, z2))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f48_in, U2, f34_in, U3, f27_in, U4, U5
Defined Pair Symbols:
F2_IN, F48_IN, F34_IN, F27_IN, U4'
Compound Symbols:
c1, c6, c8, c10, c11
(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(0, z0) → f2_out1
f2_in(z0, z1) → U1(f27_in(z0, z1), z0, z1)
U1(f27_out1(z0), z1, z2) → f2_out1
f48_in(0, z0) → f48_out1(0)
f48_in(0, 0) → f48_out1(0)
f48_in(z0, 0) → f48_out1(z0)
f48_in(s(z0), s(z1)) → U2(f48_in(z0, z1), s(z0), s(z1))
U2(f48_out1(z0), s(z1), s(z2)) → f48_out1(z0)
f34_in(s(z0), s(z1)) → U3(f48_in(z0, z1), s(z0), s(z1))
U3(f48_out1(z0), s(z1), s(z2)) → f34_out1(z0)
f27_in(z0, z1) → U4(f34_in(z0, z1), z0, z1)
U4(f34_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1, z0, z1, z2) → f27_out1(z2)
Tuples:
F2_IN(z0, z1) → c1(U1'(f27_in(z0, z1), z0, z1), F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(U2'(f48_in(z0, z1), s(z0), s(z1)), F48_IN(z0, z1))
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(U5'(f2_in(z0, z2), z1, z2, z0), F2_IN(z0, z2))
F34_IN(s(z0), s(z1)) → c(U3'(f48_in(z0, z1), s(z0), s(z1)))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
S tuples:
F2_IN(z0, z1) → c1(U1'(f27_in(z0, z1), z0, z1), F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(U2'(f48_in(z0, z1), s(z0), s(z1)), F48_IN(z0, z1))
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(U5'(f2_in(z0, z2), z1, z2, z0), F2_IN(z0, z2))
F34_IN(s(z0), s(z1)) → c(U3'(f48_in(z0, z1), s(z0), s(z1)))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f48_in, U2, f34_in, U3, f27_in, U4, U5
Defined Pair Symbols:
F2_IN, F48_IN, F27_IN, U4', F34_IN
Compound Symbols:
c1, c6, c10, c11, c
(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(0, z0) → f2_out1
f2_in(z0, z1) → U1(f27_in(z0, z1), z0, z1)
U1(f27_out1(z0), z1, z2) → f2_out1
f48_in(0, z0) → f48_out1(0)
f48_in(0, 0) → f48_out1(0)
f48_in(z0, 0) → f48_out1(z0)
f48_in(s(z0), s(z1)) → U2(f48_in(z0, z1), s(z0), s(z1))
U2(f48_out1(z0), s(z1), s(z2)) → f48_out1(z0)
f34_in(s(z0), s(z1)) → U3(f48_in(z0, z1), s(z0), s(z1))
U3(f48_out1(z0), s(z1), s(z2)) → f34_out1(z0)
f27_in(z0, z1) → U4(f34_in(z0, z1), z0, z1)
U4(f34_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1, z0, z1, z2) → f27_out1(z2)
Tuples:
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
F2_IN(z0, z1) → c1(F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(F48_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F34_IN(s(z0), s(z1)) → c
S tuples:
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
F2_IN(z0, z1) → c1(F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(F48_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F34_IN(s(z0), s(z1)) → c
K tuples:none
Defined Rule Symbols:
f2_in, U1, f48_in, U2, f34_in, U3, f27_in, U4, U5
Defined Pair Symbols:
F27_IN, F34_IN, F2_IN, F48_IN, U4'
Compound Symbols:
c10, c, c1, c6, c11, c
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F34_IN(s(z0), s(z1)) → c
We considered the (Usable) Rules:
f34_in(s(z0), s(z1)) → U3(f48_in(z0, z1), s(z0), s(z1))
f48_in(0, z0) → f48_out1(0)
f48_in(0, 0) → f48_out1(0)
f48_in(z0, 0) → f48_out1(z0)
f48_in(s(z0), s(z1)) → U2(f48_in(z0, z1), s(z0), s(z1))
U3(f48_out1(z0), s(z1), s(z2)) → f34_out1(z0)
U2(f48_out1(z0), s(z1), s(z2)) → f48_out1(z0)
And the Tuples:
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
F2_IN(z0, z1) → c1(F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(F48_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F34_IN(s(z0), s(z1)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(F27_IN(x1, x2)) = [2] + x1
POL(F2_IN(x1, x2)) = [2] + x1
POL(F34_IN(x1, x2)) = [2]
POL(F48_IN(x1, x2)) = [2]
POL(U2(x1, x2, x3)) = x1
POL(U3(x1, x2, x3)) = [1] + x1
POL(U4'(x1, x2, x3)) = x1
POL(c) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c6(x1)) = x1
POL(f34_in(x1, x2)) = x1
POL(f34_out1(x1)) = [2] + x1
POL(f48_in(x1, x2)) = [2] + x1
POL(f48_out1(x1)) = [1] + x1
POL(s(x1)) = [3] + x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(0, z0) → f2_out1
f2_in(z0, z1) → U1(f27_in(z0, z1), z0, z1)
U1(f27_out1(z0), z1, z2) → f2_out1
f48_in(0, z0) → f48_out1(0)
f48_in(0, 0) → f48_out1(0)
f48_in(z0, 0) → f48_out1(z0)
f48_in(s(z0), s(z1)) → U2(f48_in(z0, z1), s(z0), s(z1))
U2(f48_out1(z0), s(z1), s(z2)) → f48_out1(z0)
f34_in(s(z0), s(z1)) → U3(f48_in(z0, z1), s(z0), s(z1))
U3(f48_out1(z0), s(z1), s(z2)) → f34_out1(z0)
f27_in(z0, z1) → U4(f34_in(z0, z1), z0, z1)
U4(f34_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1, z0, z1, z2) → f27_out1(z2)
Tuples:
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
F2_IN(z0, z1) → c1(F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(F48_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F34_IN(s(z0), s(z1)) → c
S tuples:
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
F2_IN(z0, z1) → c1(F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(F48_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
K tuples:
F34_IN(s(z0), s(z1)) → c
Defined Rule Symbols:
f2_in, U1, f48_in, U2, f34_in, U3, f27_in, U4, U5
Defined Pair Symbols:
F27_IN, F34_IN, F2_IN, F48_IN, U4'
Compound Symbols:
c10, c, c1, c6, c11, c
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
We considered the (Usable) Rules:
f34_in(s(z0), s(z1)) → U3(f48_in(z0, z1), s(z0), s(z1))
f48_in(0, z0) → f48_out1(0)
f48_in(0, 0) → f48_out1(0)
f48_in(z0, 0) → f48_out1(z0)
f48_in(s(z0), s(z1)) → U2(f48_in(z0, z1), s(z0), s(z1))
U3(f48_out1(z0), s(z1), s(z2)) → f34_out1(z0)
U2(f48_out1(z0), s(z1), s(z2)) → f48_out1(z0)
And the Tuples:
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
F2_IN(z0, z1) → c1(F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(F48_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F34_IN(s(z0), s(z1)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(F27_IN(x1, x2)) = x1
POL(F2_IN(x1, x2)) = x1
POL(F34_IN(x1, x2)) = 0
POL(F48_IN(x1, x2)) = 0
POL(U2(x1, x2, x3)) = x1
POL(U3(x1, x2, x3)) = [1] + x1
POL(U4'(x1, x2, x3)) = x1
POL(c) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c6(x1)) = x1
POL(f34_in(x1, x2)) = x1
POL(f34_out1(x1)) = [1] + x1
POL(f48_in(x1, x2)) = x1
POL(f48_out1(x1)) = x1
POL(s(x1)) = [1] + x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(0, z0) → f2_out1
f2_in(z0, z1) → U1(f27_in(z0, z1), z0, z1)
U1(f27_out1(z0), z1, z2) → f2_out1
f48_in(0, z0) → f48_out1(0)
f48_in(0, 0) → f48_out1(0)
f48_in(z0, 0) → f48_out1(z0)
f48_in(s(z0), s(z1)) → U2(f48_in(z0, z1), s(z0), s(z1))
U2(f48_out1(z0), s(z1), s(z2)) → f48_out1(z0)
f34_in(s(z0), s(z1)) → U3(f48_in(z0, z1), s(z0), s(z1))
U3(f48_out1(z0), s(z1), s(z2)) → f34_out1(z0)
f27_in(z0, z1) → U4(f34_in(z0, z1), z0, z1)
U4(f34_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1, z0, z1, z2) → f27_out1(z2)
Tuples:
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
F2_IN(z0, z1) → c1(F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(F48_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F34_IN(s(z0), s(z1)) → c
S tuples:
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
F2_IN(z0, z1) → c1(F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(F48_IN(z0, z1))
K tuples:
F34_IN(s(z0), s(z1)) → c
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
Defined Rule Symbols:
f2_in, U1, f48_in, U2, f34_in, U3, f27_in, U4, U5
Defined Pair Symbols:
F27_IN, F34_IN, F2_IN, F48_IN, U4'
Compound Symbols:
c10, c, c1, c6, c11, c
(13) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F2_IN(z0, z1) → c1(F27_IN(z0, z1))
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F34_IN(s(z0), s(z1)) → c
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(0, z0) → f2_out1
f2_in(z0, z1) → U1(f27_in(z0, z1), z0, z1)
U1(f27_out1(z0), z1, z2) → f2_out1
f48_in(0, z0) → f48_out1(0)
f48_in(0, 0) → f48_out1(0)
f48_in(z0, 0) → f48_out1(z0)
f48_in(s(z0), s(z1)) → U2(f48_in(z0, z1), s(z0), s(z1))
U2(f48_out1(z0), s(z1), s(z2)) → f48_out1(z0)
f34_in(s(z0), s(z1)) → U3(f48_in(z0, z1), s(z0), s(z1))
U3(f48_out1(z0), s(z1), s(z2)) → f34_out1(z0)
f27_in(z0, z1) → U4(f34_in(z0, z1), z0, z1)
U4(f34_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1, z0, z1, z2) → f27_out1(z2)
Tuples:
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
F2_IN(z0, z1) → c1(F27_IN(z0, z1))
F48_IN(s(z0), s(z1)) → c6(F48_IN(z0, z1))
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F34_IN(s(z0), s(z1)) → c
S tuples:
F48_IN(s(z0), s(z1)) → c6(F48_IN(z0, z1))
K tuples:
F34_IN(s(z0), s(z1)) → c
U4'(f34_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F2_IN(z0, z1) → c1(F27_IN(z0, z1))
F27_IN(z0, z1) → c10(U4'(f34_in(z0, z1), z0, z1), F34_IN(z0, z1))
F34_IN(s(z0), s(z1)) → c(F48_IN(z0, z1))
Defined Rule Symbols:
f2_in, U1, f48_in, U2, f34_in, U3, f27_in, U4, U5
Defined Pair Symbols:
F27_IN, F34_IN, F2_IN, F48_IN, U4'
Compound Symbols:
c10, c, c1, c6, c11, c
(15) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(0, z0) → f1_out1
f1_in(s(z0), s(z1)) → U1(f36_in(z0, z1), s(z0), s(z1))
U1(f36_out1(z0), s(z1), s(z2)) → f1_out1
f39_in(0, z0) → f39_out1(0)
f39_in(0, 0) → f39_out1(0)
f39_in(z0, 0) → f39_out1(z0)
f39_in(s(z0), s(z1)) → U2(f39_in(z0, z1), s(z0), s(z1))
U2(f39_out1(z0), s(z1), s(z2)) → f39_out1(z0)
f36_in(z0, z1) → U3(f39_in(z0, z1), z0, z1)
U3(f39_out1(z0), z1, z2) → U4(f1_in(z0, s(z2)), z1, z2, z0)
U4(f1_out1, z0, z1, z2) → f36_out1(z2)
Tuples:
F1_IN(s(z0), s(z1)) → c1(U1'(f36_in(z0, z1), s(z0), s(z1)), F36_IN(z0, z1))
F39_IN(s(z0), s(z1)) → c6(U2'(f39_in(z0, z1), s(z0), s(z1)), F39_IN(z0, z1))
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(U4'(f1_in(z0, s(z2)), z1, z2, z0), F1_IN(z0, s(z2)))
S tuples:
F1_IN(s(z0), s(z1)) → c1(U1'(f36_in(z0, z1), s(z0), s(z1)), F36_IN(z0, z1))
F39_IN(s(z0), s(z1)) → c6(U2'(f39_in(z0, z1), s(z0), s(z1)), F39_IN(z0, z1))
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(U4'(f1_in(z0, s(z2)), z1, z2, z0), F1_IN(z0, s(z2)))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f39_in, U2, f36_in, U3, U4
Defined Pair Symbols:
F1_IN, F39_IN, F36_IN, U3'
Compound Symbols:
c1, c6, c8, c9
(17) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(0, z0) → f1_out1
f1_in(s(z0), s(z1)) → U1(f36_in(z0, z1), s(z0), s(z1))
U1(f36_out1(z0), s(z1), s(z2)) → f1_out1
f39_in(0, z0) → f39_out1(0)
f39_in(0, 0) → f39_out1(0)
f39_in(z0, 0) → f39_out1(z0)
f39_in(s(z0), s(z1)) → U2(f39_in(z0, z1), s(z0), s(z1))
U2(f39_out1(z0), s(z1), s(z2)) → f39_out1(z0)
f36_in(z0, z1) → U3(f39_in(z0, z1), z0, z1)
U3(f39_out1(z0), z1, z2) → U4(f1_in(z0, s(z2)), z1, z2, z0)
U4(f1_out1, z0, z1, z2) → f36_out1(z2)
Tuples:
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
F1_IN(s(z0), s(z1)) → c1(F36_IN(z0, z1))
F39_IN(s(z0), s(z1)) → c6(F39_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
S tuples:
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
F1_IN(s(z0), s(z1)) → c1(F36_IN(z0, z1))
F39_IN(s(z0), s(z1)) → c6(F39_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f39_in, U2, f36_in, U3, U4
Defined Pair Symbols:
F36_IN, F1_IN, F39_IN, U3'
Compound Symbols:
c8, c1, c6, c9
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F1_IN(s(z0), s(z1)) → c1(F36_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
We considered the (Usable) Rules:
f39_in(0, z0) → f39_out1(0)
f39_in(0, 0) → f39_out1(0)
f39_in(z0, 0) → f39_out1(z0)
f39_in(s(z0), s(z1)) → U2(f39_in(z0, z1), s(z0), s(z1))
U2(f39_out1(z0), s(z1), s(z2)) → f39_out1(z0)
And the Tuples:
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
F1_IN(s(z0), s(z1)) → c1(F36_IN(z0, z1))
F39_IN(s(z0), s(z1)) → c6(F39_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(F1_IN(x1, x2)) = [2]x1
POL(F36_IN(x1, x2)) = [1] + [2]x1
POL(F39_IN(x1, x2)) = 0
POL(U2(x1, x2, x3)) = x1
POL(U3'(x1, x2, x3)) = [1] + [2]x1
POL(c1(x1)) = x1
POL(c6(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(f39_in(x1, x2)) = x1
POL(f39_out1(x1)) = x1
POL(s(x1)) = [2] + x1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(0, z0) → f1_out1
f1_in(s(z0), s(z1)) → U1(f36_in(z0, z1), s(z0), s(z1))
U1(f36_out1(z0), s(z1), s(z2)) → f1_out1
f39_in(0, z0) → f39_out1(0)
f39_in(0, 0) → f39_out1(0)
f39_in(z0, 0) → f39_out1(z0)
f39_in(s(z0), s(z1)) → U2(f39_in(z0, z1), s(z0), s(z1))
U2(f39_out1(z0), s(z1), s(z2)) → f39_out1(z0)
f36_in(z0, z1) → U3(f39_in(z0, z1), z0, z1)
U3(f39_out1(z0), z1, z2) → U4(f1_in(z0, s(z2)), z1, z2, z0)
U4(f1_out1, z0, z1, z2) → f36_out1(z2)
Tuples:
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
F1_IN(s(z0), s(z1)) → c1(F36_IN(z0, z1))
F39_IN(s(z0), s(z1)) → c6(F39_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
S tuples:
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
F39_IN(s(z0), s(z1)) → c6(F39_IN(z0, z1))
K tuples:
F1_IN(s(z0), s(z1)) → c1(F36_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
Defined Rule Symbols:
f1_in, U1, f39_in, U2, f36_in, U3, U4
Defined Pair Symbols:
F36_IN, F1_IN, F39_IN, U3'
Compound Symbols:
c8, c1, c6, c9
(21) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(0, z0) → f1_out1
f1_in(s(z0), s(z1)) → U1(f36_in(z0, z1), s(z0), s(z1))
U1(f36_out1(z0), s(z1), s(z2)) → f1_out1
f39_in(0, z0) → f39_out1(0)
f39_in(0, 0) → f39_out1(0)
f39_in(z0, 0) → f39_out1(z0)
f39_in(s(z0), s(z1)) → U2(f39_in(z0, z1), s(z0), s(z1))
U2(f39_out1(z0), s(z1), s(z2)) → f39_out1(z0)
f36_in(z0, z1) → U3(f39_in(z0, z1), z0, z1)
U3(f39_out1(z0), z1, z2) → U4(f1_in(z0, s(z2)), z1, z2, z0)
U4(f1_out1, z0, z1, z2) → f36_out1(z2)
Tuples:
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
F1_IN(s(z0), s(z1)) → c1(F36_IN(z0, z1))
F39_IN(s(z0), s(z1)) → c6(F39_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
S tuples:
F39_IN(s(z0), s(z1)) → c6(F39_IN(z0, z1))
K tuples:
F1_IN(s(z0), s(z1)) → c1(F36_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
Defined Rule Symbols:
f1_in, U1, f39_in, U2, f36_in, U3, U4
Defined Pair Symbols:
F36_IN, F1_IN, F39_IN, U3'
Compound Symbols:
c8, c1, c6, c9
(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F39_IN(s(z0), s(z1)) → c6(F39_IN(z0, z1))
We considered the (Usable) Rules:
f39_in(0, z0) → f39_out1(0)
f39_in(0, 0) → f39_out1(0)
f39_in(z0, 0) → f39_out1(z0)
f39_in(s(z0), s(z1)) → U2(f39_in(z0, z1), s(z0), s(z1))
U2(f39_out1(z0), s(z1), s(z2)) → f39_out1(z0)
And the Tuples:
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
F1_IN(s(z0), s(z1)) → c1(F36_IN(z0, z1))
F39_IN(s(z0), s(z1)) → c6(F39_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(F1_IN(x1, x2)) = x12
POL(F36_IN(x1, x2)) = [1] + x1 + x12
POL(F39_IN(x1, x2)) = x1
POL(U2(x1, x2, x3)) = x1
POL(U3'(x1, x2, x3)) = x12
POL(c1(x1)) = x1
POL(c6(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(f39_in(x1, x2)) = x1
POL(f39_out1(x1)) = x1
POL(s(x1)) = [1] + x1
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(0, z0) → f1_out1
f1_in(s(z0), s(z1)) → U1(f36_in(z0, z1), s(z0), s(z1))
U1(f36_out1(z0), s(z1), s(z2)) → f1_out1
f39_in(0, z0) → f39_out1(0)
f39_in(0, 0) → f39_out1(0)
f39_in(z0, 0) → f39_out1(z0)
f39_in(s(z0), s(z1)) → U2(f39_in(z0, z1), s(z0), s(z1))
U2(f39_out1(z0), s(z1), s(z2)) → f39_out1(z0)
f36_in(z0, z1) → U3(f39_in(z0, z1), z0, z1)
U3(f39_out1(z0), z1, z2) → U4(f1_in(z0, s(z2)), z1, z2, z0)
U4(f1_out1, z0, z1, z2) → f36_out1(z2)
Tuples:
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
F1_IN(s(z0), s(z1)) → c1(F36_IN(z0, z1))
F39_IN(s(z0), s(z1)) → c6(F39_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
S tuples:none
K tuples:
F1_IN(s(z0), s(z1)) → c1(F36_IN(z0, z1))
U3'(f39_out1(z0), z1, z2) → c9(F1_IN(z0, s(z2)))
F36_IN(z0, z1) → c8(U3'(f39_in(z0, z1), z0, z1), F39_IN(z0, z1))
F39_IN(s(z0), s(z1)) → c6(F39_IN(z0, z1))
Defined Rule Symbols:
f1_in, U1, f39_in, U2, f36_in, U3, U4
Defined Pair Symbols:
F36_IN, F1_IN, F39_IN, U3'
Compound Symbols:
c8, c1, c6, c9
(25) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(26) BOUNDS(O(1), O(1))