↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
transpose2: (f,b)
transpose_aux3: (f,b,b)
row2col4: (f,b,f,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
transpose_2_in_ag2(A, B) -> if_transpose_2_in_1_ag3(A, B, transpose_aux_3_in_agg3(A, []_0, B))
transpose_aux_3_in_agg3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_in_agaa4(R, ._22(C, Cs), Cols1, Accm))
row2col_4_in_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_in_agaa4(Xs, Cols, Cols1, As))
row2col_4_in_agaa4([]_0, []_0, []_0, []_0) -> row2col_4_out_agaa4([]_0, []_0, []_0, []_0)
if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_out_agaa4(Xs, Cols, Cols1, As)) -> row2col_4_out_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As))
if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_in_agg3(Rs, Accm, Cols1))
transpose_aux_3_in_agg3([]_0, X, X) -> transpose_aux_3_out_agg3([]_0, X, X)
if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_out_agg3(Rs, Accm, Cols1)) -> transpose_aux_3_out_agg3(._22(R, Rs), underscore, ._22(C, Cs))
if_transpose_2_in_1_ag3(A, B, transpose_aux_3_out_agg3(A, []_0, B)) -> transpose_2_out_ag2(A, B)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
transpose_2_in_ag2(A, B) -> if_transpose_2_in_1_ag3(A, B, transpose_aux_3_in_agg3(A, []_0, B))
transpose_aux_3_in_agg3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_in_agaa4(R, ._22(C, Cs), Cols1, Accm))
row2col_4_in_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_in_agaa4(Xs, Cols, Cols1, As))
row2col_4_in_agaa4([]_0, []_0, []_0, []_0) -> row2col_4_out_agaa4([]_0, []_0, []_0, []_0)
if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_out_agaa4(Xs, Cols, Cols1, As)) -> row2col_4_out_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As))
if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_in_agg3(Rs, Accm, Cols1))
transpose_aux_3_in_agg3([]_0, X, X) -> transpose_aux_3_out_agg3([]_0, X, X)
if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_out_agg3(Rs, Accm, Cols1)) -> transpose_aux_3_out_agg3(._22(R, Rs), underscore, ._22(C, Cs))
if_transpose_2_in_1_ag3(A, B, transpose_aux_3_out_agg3(A, []_0, B)) -> transpose_2_out_ag2(A, B)
TRANSPOSE_2_IN_AG2(A, B) -> IF_TRANSPOSE_2_IN_1_AG3(A, B, transpose_aux_3_in_agg3(A, []_0, B))
TRANSPOSE_2_IN_AG2(A, B) -> TRANSPOSE_AUX_3_IN_AGG3(A, []_0, B)
TRANSPOSE_AUX_3_IN_AGG3(._22(R, Rs), underscore, ._22(C, Cs)) -> IF_TRANSPOSE_AUX_3_IN_1_AGG6(R, Rs, underscore, C, Cs, row2col_4_in_agaa4(R, ._22(C, Cs), Cols1, Accm))
TRANSPOSE_AUX_3_IN_AGG3(._22(R, Rs), underscore, ._22(C, Cs)) -> ROW2COL_4_IN_AGAA4(R, ._22(C, Cs), Cols1, Accm)
ROW2COL_4_IN_AGAA4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> IF_ROW2COL_4_IN_1_AGAA7(X, Xs, Ys, Cols, Cols1, As, row2col_4_in_agaa4(Xs, Cols, Cols1, As))
ROW2COL_4_IN_AGAA4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> ROW2COL_4_IN_AGAA4(Xs, Cols, Cols1, As)
IF_TRANSPOSE_AUX_3_IN_1_AGG6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> IF_TRANSPOSE_AUX_3_IN_2_AGG8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_in_agg3(Rs, Accm, Cols1))
IF_TRANSPOSE_AUX_3_IN_1_AGG6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> TRANSPOSE_AUX_3_IN_AGG3(Rs, Accm, Cols1)
transpose_2_in_ag2(A, B) -> if_transpose_2_in_1_ag3(A, B, transpose_aux_3_in_agg3(A, []_0, B))
transpose_aux_3_in_agg3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_in_agaa4(R, ._22(C, Cs), Cols1, Accm))
row2col_4_in_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_in_agaa4(Xs, Cols, Cols1, As))
row2col_4_in_agaa4([]_0, []_0, []_0, []_0) -> row2col_4_out_agaa4([]_0, []_0, []_0, []_0)
if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_out_agaa4(Xs, Cols, Cols1, As)) -> row2col_4_out_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As))
if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_in_agg3(Rs, Accm, Cols1))
transpose_aux_3_in_agg3([]_0, X, X) -> transpose_aux_3_out_agg3([]_0, X, X)
if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_out_agg3(Rs, Accm, Cols1)) -> transpose_aux_3_out_agg3(._22(R, Rs), underscore, ._22(C, Cs))
if_transpose_2_in_1_ag3(A, B, transpose_aux_3_out_agg3(A, []_0, B)) -> transpose_2_out_ag2(A, B)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
TRANSPOSE_2_IN_AG2(A, B) -> IF_TRANSPOSE_2_IN_1_AG3(A, B, transpose_aux_3_in_agg3(A, []_0, B))
TRANSPOSE_2_IN_AG2(A, B) -> TRANSPOSE_AUX_3_IN_AGG3(A, []_0, B)
TRANSPOSE_AUX_3_IN_AGG3(._22(R, Rs), underscore, ._22(C, Cs)) -> IF_TRANSPOSE_AUX_3_IN_1_AGG6(R, Rs, underscore, C, Cs, row2col_4_in_agaa4(R, ._22(C, Cs), Cols1, Accm))
TRANSPOSE_AUX_3_IN_AGG3(._22(R, Rs), underscore, ._22(C, Cs)) -> ROW2COL_4_IN_AGAA4(R, ._22(C, Cs), Cols1, Accm)
ROW2COL_4_IN_AGAA4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> IF_ROW2COL_4_IN_1_AGAA7(X, Xs, Ys, Cols, Cols1, As, row2col_4_in_agaa4(Xs, Cols, Cols1, As))
ROW2COL_4_IN_AGAA4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> ROW2COL_4_IN_AGAA4(Xs, Cols, Cols1, As)
IF_TRANSPOSE_AUX_3_IN_1_AGG6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> IF_TRANSPOSE_AUX_3_IN_2_AGG8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_in_agg3(Rs, Accm, Cols1))
IF_TRANSPOSE_AUX_3_IN_1_AGG6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> TRANSPOSE_AUX_3_IN_AGG3(Rs, Accm, Cols1)
transpose_2_in_ag2(A, B) -> if_transpose_2_in_1_ag3(A, B, transpose_aux_3_in_agg3(A, []_0, B))
transpose_aux_3_in_agg3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_in_agaa4(R, ._22(C, Cs), Cols1, Accm))
row2col_4_in_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_in_agaa4(Xs, Cols, Cols1, As))
row2col_4_in_agaa4([]_0, []_0, []_0, []_0) -> row2col_4_out_agaa4([]_0, []_0, []_0, []_0)
if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_out_agaa4(Xs, Cols, Cols1, As)) -> row2col_4_out_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As))
if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_in_agg3(Rs, Accm, Cols1))
transpose_aux_3_in_agg3([]_0, X, X) -> transpose_aux_3_out_agg3([]_0, X, X)
if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_out_agg3(Rs, Accm, Cols1)) -> transpose_aux_3_out_agg3(._22(R, Rs), underscore, ._22(C, Cs))
if_transpose_2_in_1_ag3(A, B, transpose_aux_3_out_agg3(A, []_0, B)) -> transpose_2_out_ag2(A, B)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
ROW2COL_4_IN_AGAA4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> ROW2COL_4_IN_AGAA4(Xs, Cols, Cols1, As)
transpose_2_in_ag2(A, B) -> if_transpose_2_in_1_ag3(A, B, transpose_aux_3_in_agg3(A, []_0, B))
transpose_aux_3_in_agg3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_in_agaa4(R, ._22(C, Cs), Cols1, Accm))
row2col_4_in_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_in_agaa4(Xs, Cols, Cols1, As))
row2col_4_in_agaa4([]_0, []_0, []_0, []_0) -> row2col_4_out_agaa4([]_0, []_0, []_0, []_0)
if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_out_agaa4(Xs, Cols, Cols1, As)) -> row2col_4_out_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As))
if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_in_agg3(Rs, Accm, Cols1))
transpose_aux_3_in_agg3([]_0, X, X) -> transpose_aux_3_out_agg3([]_0, X, X)
if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_out_agg3(Rs, Accm, Cols1)) -> transpose_aux_3_out_agg3(._22(R, Rs), underscore, ._22(C, Cs))
if_transpose_2_in_1_ag3(A, B, transpose_aux_3_out_agg3(A, []_0, B)) -> transpose_2_out_ag2(A, B)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
ROW2COL_4_IN_AGAA4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> ROW2COL_4_IN_AGAA4(Xs, Cols, Cols1, As)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
ROW2COL_4_IN_AGAA1(._22(._22(X, Ys), Cols)) -> ROW2COL_4_IN_AGAA1(Cols)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_TRANSPOSE_AUX_3_IN_1_AGG6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> TRANSPOSE_AUX_3_IN_AGG3(Rs, Accm, Cols1)
TRANSPOSE_AUX_3_IN_AGG3(._22(R, Rs), underscore, ._22(C, Cs)) -> IF_TRANSPOSE_AUX_3_IN_1_AGG6(R, Rs, underscore, C, Cs, row2col_4_in_agaa4(R, ._22(C, Cs), Cols1, Accm))
transpose_2_in_ag2(A, B) -> if_transpose_2_in_1_ag3(A, B, transpose_aux_3_in_agg3(A, []_0, B))
transpose_aux_3_in_agg3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_in_agaa4(R, ._22(C, Cs), Cols1, Accm))
row2col_4_in_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_in_agaa4(Xs, Cols, Cols1, As))
row2col_4_in_agaa4([]_0, []_0, []_0, []_0) -> row2col_4_out_agaa4([]_0, []_0, []_0, []_0)
if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_out_agaa4(Xs, Cols, Cols1, As)) -> row2col_4_out_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As))
if_transpose_aux_3_in_1_agg6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_in_agg3(Rs, Accm, Cols1))
transpose_aux_3_in_agg3([]_0, X, X) -> transpose_aux_3_out_agg3([]_0, X, X)
if_transpose_aux_3_in_2_agg8(R, Rs, underscore, C, Cs, Cols1, Accm, transpose_aux_3_out_agg3(Rs, Accm, Cols1)) -> transpose_aux_3_out_agg3(._22(R, Rs), underscore, ._22(C, Cs))
if_transpose_2_in_1_ag3(A, B, transpose_aux_3_out_agg3(A, []_0, B)) -> transpose_2_out_ag2(A, B)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_TRANSPOSE_AUX_3_IN_1_AGG6(R, Rs, underscore, C, Cs, row2col_4_out_agaa4(R, ._22(C, Cs), Cols1, Accm)) -> TRANSPOSE_AUX_3_IN_AGG3(Rs, Accm, Cols1)
TRANSPOSE_AUX_3_IN_AGG3(._22(R, Rs), underscore, ._22(C, Cs)) -> IF_TRANSPOSE_AUX_3_IN_1_AGG6(R, Rs, underscore, C, Cs, row2col_4_in_agaa4(R, ._22(C, Cs), Cols1, Accm))
row2col_4_in_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As)) -> if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_in_agaa4(Xs, Cols, Cols1, As))
if_row2col_4_in_1_agaa7(X, Xs, Ys, Cols, Cols1, As, row2col_4_out_agaa4(Xs, Cols, Cols1, As)) -> row2col_4_out_agaa4(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), ._22([]_0, As))
row2col_4_in_agaa4([]_0, []_0, []_0, []_0) -> row2col_4_out_agaa4([]_0, []_0, []_0, []_0)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
IF_TRANSPOSE_AUX_3_IN_1_AGG1(row2col_4_out_agaa3(R, Cols1, Accm)) -> TRANSPOSE_AUX_3_IN_AGG2(Accm, Cols1)
TRANSPOSE_AUX_3_IN_AGG2(underscore, ._22(C, Cs)) -> IF_TRANSPOSE_AUX_3_IN_1_AGG1(row2col_4_in_agaa1(._22(C, Cs)))
row2col_4_in_agaa1(._22(._22(X, Ys), Cols)) -> if_row2col_4_in_1_agaa3(X, Ys, row2col_4_in_agaa1(Cols))
if_row2col_4_in_1_agaa3(X, Ys, row2col_4_out_agaa3(Xs, Cols1, As)) -> row2col_4_out_agaa3(._22(X, Xs), ._22(Ys, Cols1), ._22([]_0, As))
row2col_4_in_agaa1([]_0) -> row2col_4_out_agaa3([]_0, []_0, []_0)
row2col_4_in_agaa1(x0)
if_row2col_4_in_1_agaa3(x0, x1, x2)
The remaining Dependency Pairs were at least non-strictly be oriented.
TRANSPOSE_AUX_3_IN_AGG2(underscore, ._22(C, Cs)) -> IF_TRANSPOSE_AUX_3_IN_1_AGG1(row2col_4_in_agaa1(._22(C, Cs)))
With the implicit AFS we had to orient the following set of usable rules non-strictly.
IF_TRANSPOSE_AUX_3_IN_1_AGG1(row2col_4_out_agaa3(R, Cols1, Accm)) -> TRANSPOSE_AUX_3_IN_AGG2(Accm, Cols1)
Used ordering: POLO with Polynomial interpretation:
row2col_4_in_agaa1([]_0) -> row2col_4_out_agaa3([]_0, []_0, []_0)
row2col_4_in_agaa1(._22(._22(X, Ys), Cols)) -> if_row2col_4_in_1_agaa3(X, Ys, row2col_4_in_agaa1(Cols))
if_row2col_4_in_1_agaa3(X, Ys, row2col_4_out_agaa3(Xs, Cols1, As)) -> row2col_4_out_agaa3(._22(X, Xs), ._22(Ys, Cols1), ._22([]_0, As))
POL(._22(x1, x2)) = 1 + x1 + 2·x2
POL(if_row2col_4_in_1_agaa3(x1, x2, x3)) = 2 + 2·x2 + 2·x3
POL(row2col_4_out_agaa3(x1, x2, x3)) = 2·x2
POL(TRANSPOSE_AUX_3_IN_AGG2(x1, x2)) = 2·x2
POL(IF_TRANSPOSE_AUX_3_IN_1_AGG1(x1)) = x1
POL(row2col_4_in_agaa1(x1)) = x1
POL([]_0) = 0
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
IF_TRANSPOSE_AUX_3_IN_1_AGG1(row2col_4_out_agaa3(R, Cols1, Accm)) -> TRANSPOSE_AUX_3_IN_AGG2(Accm, Cols1)
row2col_4_in_agaa1(._22(._22(X, Ys), Cols)) -> if_row2col_4_in_1_agaa3(X, Ys, row2col_4_in_agaa1(Cols))
if_row2col_4_in_1_agaa3(X, Ys, row2col_4_out_agaa3(Xs, Cols1, As)) -> row2col_4_out_agaa3(._22(X, Xs), ._22(Ys, Cols1), ._22([]_0, As))
row2col_4_in_agaa1([]_0) -> row2col_4_out_agaa3([]_0, []_0, []_0)
row2col_4_in_agaa1(x0)
if_row2col_4_in_1_agaa3(x0, x1, x2)