Left Termination of the query pattern sublist(b,f) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

sublist2(Xs, Ys) :- app3(underscore, Zs, Ys), app3(Xs, underscore1, Zs).
app3({}0, X, X).
app3(.2(X, Xs), Ys, .2(X, Zs)) :- app3(Xs, Ys, Zs).


With regard to the inferred argument filtering the predicates were used in the following modes:
sublist2: (b,f)
app3: (f,f,f) (b,f,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga1(x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa1(x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga1(x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa1(x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga


Pi DP problem:
The TRS P consists of the following rules:

SUBLIST_2_IN_GA2(Xs, Ys) -> IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
SUBLIST_2_IN_GA2(Xs, Ys) -> APP_3_IN_AAA3(underscore, Zs, Ys)
APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_AAA5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAA3(Xs, Ys, Zs)
IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> IF_SUBLIST_2_IN_2_GA4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> APP_3_IN_GAA3(Xs, underscore1, Zs)
APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GAA5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga1(x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa1(x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga
SUBLIST_2_IN_GA2(x1, x2)  =  SUBLIST_2_IN_GA1(x1)
IF_APP_3_IN_1_GAA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GAA1(x5)
IF_SUBLIST_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_SUBLIST_2_IN_2_GA1(x4)
APP_3_IN_GAA3(x1, x2, x3)  =  APP_3_IN_GAA1(x1)
IF_SUBLIST_2_IN_1_GA3(x1, x2, x3)  =  IF_SUBLIST_2_IN_1_GA2(x1, x3)
APP_3_IN_AAA3(x1, x2, x3)  =  APP_3_IN_AAA
IF_APP_3_IN_1_AAA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_AAA1(x5)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

SUBLIST_2_IN_GA2(Xs, Ys) -> IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
SUBLIST_2_IN_GA2(Xs, Ys) -> APP_3_IN_AAA3(underscore, Zs, Ys)
APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_AAA5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAA3(Xs, Ys, Zs)
IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> IF_SUBLIST_2_IN_2_GA4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> APP_3_IN_GAA3(Xs, underscore1, Zs)
APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GAA5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga1(x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa1(x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga
SUBLIST_2_IN_GA2(x1, x2)  =  SUBLIST_2_IN_GA1(x1)
IF_APP_3_IN_1_GAA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GAA1(x5)
IF_SUBLIST_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_SUBLIST_2_IN_2_GA1(x4)
APP_3_IN_GAA3(x1, x2, x3)  =  APP_3_IN_GAA1(x1)
IF_SUBLIST_2_IN_1_GA3(x1, x2, x3)  =  IF_SUBLIST_2_IN_1_GA2(x1, x3)
APP_3_IN_AAA3(x1, x2, x3)  =  APP_3_IN_AAA
IF_APP_3_IN_1_AAA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_AAA1(x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 6 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga1(x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa1(x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga
APP_3_IN_GAA3(x1, x2, x3)  =  APP_3_IN_GAA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GAA3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_3_IN_GAA3(x1, x2, x3)  =  APP_3_IN_GAA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

APP_3_IN_GAA1(._21(Xs)) -> APP_3_IN_GAA1(Xs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APP_3_IN_GAA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga1(x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa1(x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga
APP_3_IN_AAA3(x1, x2, x3)  =  APP_3_IN_AAA

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAA3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_3_IN_AAA3(x1, x2, x3)  =  APP_3_IN_AAA

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

APP_3_IN_AAA -> APP_3_IN_AAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APP_3_IN_AAA}.
With regard to the inferred argument filtering the predicates were used in the following modes:
sublist2: (b,f)
app3: (f,f,f) (b,f,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga2(x1, x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa1(x1)
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa2(x2, x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga1(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga2(x1, x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa1(x1)
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa2(x2, x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga1(x1)


Pi DP problem:
The TRS P consists of the following rules:

SUBLIST_2_IN_GA2(Xs, Ys) -> IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
SUBLIST_2_IN_GA2(Xs, Ys) -> APP_3_IN_AAA3(underscore, Zs, Ys)
APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_AAA5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAA3(Xs, Ys, Zs)
IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> IF_SUBLIST_2_IN_2_GA4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> APP_3_IN_GAA3(Xs, underscore1, Zs)
APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GAA5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga2(x1, x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa1(x1)
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa2(x2, x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga1(x1)
SUBLIST_2_IN_GA2(x1, x2)  =  SUBLIST_2_IN_GA1(x1)
IF_APP_3_IN_1_GAA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GAA2(x2, x5)
IF_SUBLIST_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_SUBLIST_2_IN_2_GA2(x1, x4)
APP_3_IN_GAA3(x1, x2, x3)  =  APP_3_IN_GAA1(x1)
IF_SUBLIST_2_IN_1_GA3(x1, x2, x3)  =  IF_SUBLIST_2_IN_1_GA2(x1, x3)
APP_3_IN_AAA3(x1, x2, x3)  =  APP_3_IN_AAA
IF_APP_3_IN_1_AAA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_AAA1(x5)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

SUBLIST_2_IN_GA2(Xs, Ys) -> IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
SUBLIST_2_IN_GA2(Xs, Ys) -> APP_3_IN_AAA3(underscore, Zs, Ys)
APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_AAA5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAA3(Xs, Ys, Zs)
IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> IF_SUBLIST_2_IN_2_GA4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
IF_SUBLIST_2_IN_1_GA3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> APP_3_IN_GAA3(Xs, underscore1, Zs)
APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_GAA5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga2(x1, x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa1(x1)
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa2(x2, x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga1(x1)
SUBLIST_2_IN_GA2(x1, x2)  =  SUBLIST_2_IN_GA1(x1)
IF_APP_3_IN_1_GAA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_GAA2(x2, x5)
IF_SUBLIST_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_SUBLIST_2_IN_2_GA2(x1, x4)
APP_3_IN_GAA3(x1, x2, x3)  =  APP_3_IN_GAA1(x1)
IF_SUBLIST_2_IN_1_GA3(x1, x2, x3)  =  IF_SUBLIST_2_IN_1_GA2(x1, x3)
APP_3_IN_AAA3(x1, x2, x3)  =  APP_3_IN_AAA
IF_APP_3_IN_1_AAA5(x1, x2, x3, x4, x5)  =  IF_APP_3_IN_1_AAA1(x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 6 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga2(x1, x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa1(x1)
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa2(x2, x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga1(x1)
APP_3_IN_GAA3(x1, x2, x3)  =  APP_3_IN_GAA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_GAA3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_3_IN_GAA3(x1, x2, x3)  =  APP_3_IN_GAA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APP_3_IN_GAA1(._21(Xs)) -> APP_3_IN_GAA1(Xs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APP_3_IN_GAA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

sublist_2_in_ga2(Xs, Ys) -> if_sublist_2_in_1_ga3(Xs, Ys, app_3_in_aaa3(underscore, Zs, Ys))
app_3_in_aaa3([]_0, X, X) -> app_3_out_aaa3([]_0, X, X)
app_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_in_aaa3(Xs, Ys, Zs))
if_app_3_in_1_aaa5(X, Xs, Ys, Zs, app_3_out_aaa3(Xs, Ys, Zs)) -> app_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_1_ga3(Xs, Ys, app_3_out_aaa3(underscore, Zs, Ys)) -> if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_in_gaa3(Xs, underscore1, Zs))
app_3_in_gaa3([]_0, X, X) -> app_3_out_gaa3([]_0, X, X)
app_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_in_gaa3(Xs, Ys, Zs))
if_app_3_in_1_gaa5(X, Xs, Ys, Zs, app_3_out_gaa3(Xs, Ys, Zs)) -> app_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_sublist_2_in_2_ga4(Xs, Ys, Zs, app_3_out_gaa3(Xs, underscore1, Zs)) -> sublist_2_out_ga2(Xs, Ys)

The argument filtering Pi contains the following mapping:
sublist_2_in_ga2(x1, x2)  =  sublist_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._21(x2)
if_sublist_2_in_1_ga3(x1, x2, x3)  =  if_sublist_2_in_1_ga2(x1, x3)
app_3_in_aaa3(x1, x2, x3)  =  app_3_in_aaa
app_3_out_aaa3(x1, x2, x3)  =  app_3_out_aaa1(x1)
if_app_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_aaa1(x5)
if_sublist_2_in_2_ga4(x1, x2, x3, x4)  =  if_sublist_2_in_2_ga2(x1, x4)
app_3_in_gaa3(x1, x2, x3)  =  app_3_in_gaa1(x1)
app_3_out_gaa3(x1, x2, x3)  =  app_3_out_gaa1(x1)
if_app_3_in_1_gaa5(x1, x2, x3, x4, x5)  =  if_app_3_in_1_gaa2(x2, x5)
sublist_2_out_ga2(x1, x2)  =  sublist_2_out_ga1(x1)
APP_3_IN_AAA3(x1, x2, x3)  =  APP_3_IN_AAA

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

APP_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAA3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_3_IN_AAA3(x1, x2, x3)  =  APP_3_IN_AAA

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP

Q DP problem:
The TRS P consists of the following rules:

APP_3_IN_AAA -> APP_3_IN_AAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APP_3_IN_AAA}.