Left Termination of the query pattern perm1(b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

perm12({}0, {}0).
perm12(Xs, .2(X, Ys)) :- select3(X, Xs, Zs), perm12(Zs, Ys).
select3(X, .2(X, Xs), Xs).
select3(X, .2(Y, Xs), .2(Y, Zs)) :- select3(X, Xs, Zs).


With regard to the inferred argument filtering the predicates were used in the following modes:
perm12: (b,f)
select3: (f,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))

The argument filtering Pi contains the following mapping:
perm1_2_in_ga2(x1, x2)  =  perm1_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm1_2_out_ga2(x1, x2)  =  perm1_2_out_ga1(x2)
if_perm1_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm1_2_in_1_ga1(x4)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga2(x1, x3)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga2(x2, x5)
if_perm1_2_in_2_ga5(x1, x2, x3, x4, x5)  =  if_perm1_2_in_2_ga2(x2, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))

The argument filtering Pi contains the following mapping:
perm1_2_in_ga2(x1, x2)  =  perm1_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm1_2_out_ga2(x1, x2)  =  perm1_2_out_ga1(x2)
if_perm1_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm1_2_in_1_ga1(x4)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga2(x1, x3)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga2(x2, x5)
if_perm1_2_in_2_ga5(x1, x2, x3, x4, x5)  =  if_perm1_2_in_2_ga2(x2, x5)


Pi DP problem:
The TRS P consists of the following rules:

PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> SELECT_3_IN_AGA3(X, Xs, Zs)
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> IF_SELECT_3_IN_1_AGA5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> SELECT_3_IN_AGA3(X, Xs, Zs)
IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> IF_PERM1_2_IN_2_GA5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> PERM1_2_IN_GA2(Zs, Ys)

The TRS R consists of the following rules:

perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))

The argument filtering Pi contains the following mapping:
perm1_2_in_ga2(x1, x2)  =  perm1_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm1_2_out_ga2(x1, x2)  =  perm1_2_out_ga1(x2)
if_perm1_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm1_2_in_1_ga1(x4)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga2(x1, x3)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga2(x2, x5)
if_perm1_2_in_2_ga5(x1, x2, x3, x4, x5)  =  if_perm1_2_in_2_ga2(x2, x5)
SELECT_3_IN_AGA3(x1, x2, x3)  =  SELECT_3_IN_AGA1(x2)
IF_PERM1_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM1_2_IN_1_GA1(x4)
IF_PERM1_2_IN_2_GA5(x1, x2, x3, x4, x5)  =  IF_PERM1_2_IN_2_GA2(x2, x5)
IF_SELECT_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_SELECT_3_IN_1_AGA2(x2, x5)
PERM1_2_IN_GA2(x1, x2)  =  PERM1_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> SELECT_3_IN_AGA3(X, Xs, Zs)
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> IF_SELECT_3_IN_1_AGA5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> SELECT_3_IN_AGA3(X, Xs, Zs)
IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> IF_PERM1_2_IN_2_GA5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> PERM1_2_IN_GA2(Zs, Ys)

The TRS R consists of the following rules:

perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))

The argument filtering Pi contains the following mapping:
perm1_2_in_ga2(x1, x2)  =  perm1_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm1_2_out_ga2(x1, x2)  =  perm1_2_out_ga1(x2)
if_perm1_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm1_2_in_1_ga1(x4)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga2(x1, x3)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga2(x2, x5)
if_perm1_2_in_2_ga5(x1, x2, x3, x4, x5)  =  if_perm1_2_in_2_ga2(x2, x5)
SELECT_3_IN_AGA3(x1, x2, x3)  =  SELECT_3_IN_AGA1(x2)
IF_PERM1_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM1_2_IN_1_GA1(x4)
IF_PERM1_2_IN_2_GA5(x1, x2, x3, x4, x5)  =  IF_PERM1_2_IN_2_GA2(x2, x5)
IF_SELECT_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_SELECT_3_IN_1_AGA2(x2, x5)
PERM1_2_IN_GA2(x1, x2)  =  PERM1_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> SELECT_3_IN_AGA3(X, Xs, Zs)

The TRS R consists of the following rules:

perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))

The argument filtering Pi contains the following mapping:
perm1_2_in_ga2(x1, x2)  =  perm1_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm1_2_out_ga2(x1, x2)  =  perm1_2_out_ga1(x2)
if_perm1_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm1_2_in_1_ga1(x4)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga2(x1, x3)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga2(x2, x5)
if_perm1_2_in_2_ga5(x1, x2, x3, x4, x5)  =  if_perm1_2_in_2_ga2(x2, x5)
SELECT_3_IN_AGA3(x1, x2, x3)  =  SELECT_3_IN_AGA1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> SELECT_3_IN_AGA3(X, Xs, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
SELECT_3_IN_AGA3(x1, x2, x3)  =  SELECT_3_IN_AGA1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

SELECT_3_IN_AGA1(._22(Y, Xs)) -> SELECT_3_IN_AGA1(Xs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {SELECT_3_IN_AGA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> PERM1_2_IN_GA2(Zs, Ys)
PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))

The TRS R consists of the following rules:

perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))

The argument filtering Pi contains the following mapping:
perm1_2_in_ga2(x1, x2)  =  perm1_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm1_2_out_ga2(x1, x2)  =  perm1_2_out_ga1(x2)
if_perm1_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm1_2_in_1_ga1(x4)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga2(x1, x3)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga2(x2, x5)
if_perm1_2_in_2_ga5(x1, x2, x3, x4, x5)  =  if_perm1_2_in_2_ga2(x2, x5)
IF_PERM1_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM1_2_IN_1_GA1(x4)
PERM1_2_IN_GA2(x1, x2)  =  PERM1_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> PERM1_2_IN_GA2(Zs, Ys)
PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))

The TRS R consists of the following rules:

select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))

The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
select_3_in_aga3(x1, x2, x3)  =  select_3_in_aga1(x2)
select_3_out_aga3(x1, x2, x3)  =  select_3_out_aga2(x1, x3)
if_select_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_select_3_in_1_aga2(x2, x5)
IF_PERM1_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM1_2_IN_1_GA1(x4)
PERM1_2_IN_GA2(x1, x2)  =  PERM1_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

IF_PERM1_2_IN_1_GA1(select_3_out_aga2(X, Zs)) -> PERM1_2_IN_GA1(Zs)
PERM1_2_IN_GA1(Xs) -> IF_PERM1_2_IN_1_GA1(select_3_in_aga1(Xs))

The TRS R consists of the following rules:

select_3_in_aga1(._22(X, Xs)) -> select_3_out_aga2(X, Xs)
select_3_in_aga1(._22(Y, Xs)) -> if_select_3_in_1_aga2(Y, select_3_in_aga1(Xs))
if_select_3_in_1_aga2(Y, select_3_out_aga2(X, Zs)) -> select_3_out_aga2(X, ._22(Y, Zs))

The set Q consists of the following terms:

select_3_in_aga1(x0)
if_select_3_in_1_aga2(x0, x1)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {PERM1_2_IN_GA1, IF_PERM1_2_IN_1_GA1}.
We used the following order together with the size-change analysis to show that there are no infinite chains for this DP problem.

Order:Polynomial interpretation:


POL(._22(x1, x2)) = 1 + x2   
POL(select_3_out_aga2(x1, x2)) = 1 + x2   
POL(if_select_3_in_1_aga2(x1, x2)) = 1 + x2   
POL(select_3_in_aga1(x1)) = x1   

From the DPs we obtained the following set of size-change graphs:

We oriented the following set of usable rules.


select_3_in_aga1(._22(X, Xs)) -> select_3_out_aga2(X, Xs)
select_3_in_aga1(._22(Y, Xs)) -> if_select_3_in_1_aga2(Y, select_3_in_aga1(Xs))
if_select_3_in_1_aga2(Y, select_3_out_aga2(X, Zs)) -> select_3_out_aga2(X, ._22(Y, Zs))