↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
perm12: (b,f)
select3: (f,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))
PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> SELECT_3_IN_AGA3(X, Xs, Zs)
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> IF_SELECT_3_IN_1_AGA5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> SELECT_3_IN_AGA3(X, Xs, Zs)
IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> IF_PERM1_2_IN_2_GA5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> PERM1_2_IN_GA2(Zs, Ys)
perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> SELECT_3_IN_AGA3(X, Xs, Zs)
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> IF_SELECT_3_IN_1_AGA5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> SELECT_3_IN_AGA3(X, Xs, Zs)
IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> IF_PERM1_2_IN_2_GA5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> PERM1_2_IN_GA2(Zs, Ys)
perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> SELECT_3_IN_AGA3(X, Xs, Zs)
perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
SELECT_3_IN_AGA3(X, ._22(Y, Xs), ._22(Y, Zs)) -> SELECT_3_IN_AGA3(X, Xs, Zs)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
SELECT_3_IN_AGA1(._22(Y, Xs)) -> SELECT_3_IN_AGA1(Xs)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> PERM1_2_IN_GA2(Zs, Ys)
PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
perm1_2_in_ga2([]_0, []_0) -> perm1_2_out_ga2([]_0, []_0)
perm1_2_in_ga2(Xs, ._22(X, Ys)) -> if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
if_perm1_2_in_1_ga4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_in_ga2(Zs, Ys))
if_perm1_2_in_2_ga5(Xs, X, Ys, Zs, perm1_2_out_ga2(Zs, Ys)) -> perm1_2_out_ga2(Xs, ._22(X, Ys))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_out_aga3(X, Xs, Zs)) -> PERM1_2_IN_GA2(Zs, Ys)
PERM1_2_IN_GA2(Xs, ._22(X, Ys)) -> IF_PERM1_2_IN_1_GA4(Xs, X, Ys, select_3_in_aga3(X, Xs, Zs))
select_3_in_aga3(X, ._22(X, Xs), Xs) -> select_3_out_aga3(X, ._22(X, Xs), Xs)
select_3_in_aga3(X, ._22(Y, Xs), ._22(Y, Zs)) -> if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_in_aga3(X, Xs, Zs))
if_select_3_in_1_aga5(X, Y, Xs, Zs, select_3_out_aga3(X, Xs, Zs)) -> select_3_out_aga3(X, ._22(Y, Xs), ._22(Y, Zs))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
IF_PERM1_2_IN_1_GA1(select_3_out_aga2(X, Zs)) -> PERM1_2_IN_GA1(Zs)
PERM1_2_IN_GA1(Xs) -> IF_PERM1_2_IN_1_GA1(select_3_in_aga1(Xs))
select_3_in_aga1(._22(X, Xs)) -> select_3_out_aga2(X, Xs)
select_3_in_aga1(._22(Y, Xs)) -> if_select_3_in_1_aga2(Y, select_3_in_aga1(Xs))
if_select_3_in_1_aga2(Y, select_3_out_aga2(X, Zs)) -> select_3_out_aga2(X, ._22(Y, Zs))
select_3_in_aga1(x0)
if_select_3_in_1_aga2(x0, x1)
Order:Polynomial interpretation:
POL(._22(x1, x2)) = 1 + x2
POL(select_3_out_aga2(x1, x2)) = 1 + x2
POL(if_select_3_in_1_aga2(x1, x2)) = 1 + x2
POL(select_3_in_aga1(x1)) = x1
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules.
select_3_in_aga1(._22(X, Xs)) -> select_3_out_aga2(X, Xs)
select_3_in_aga1(._22(Y, Xs)) -> if_select_3_in_1_aga2(Y, select_3_in_aga1(Xs))
if_select_3_in_1_aga2(Y, select_3_out_aga2(X, Zs)) -> select_3_out_aga2(X, ._22(Y, Zs))