↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
p1: (b)
mult3: (b,b,f)
sum3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_1_in_g1(._22(X, []_0)) -> p_1_out_g1(._22(X, []_0))
p_1_in_g1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> if_p_1_in_1_g4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
p_1_in_g1(._22(0_0, Xs)) -> if_p_1_in_4_g2(Xs, p_1_in_g1(Xs))
if_p_1_in_4_g2(Xs, p_1_out_g1(Xs)) -> p_1_out_g1(._22(0_0, Xs))
if_p_1_in_1_g4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> if_p_1_in_2_g4(X, Y, Xs, mult_3_in_gga3(X, Y, Z))
mult_3_in_gga3(underscore, 0_0, 0_0) -> mult_3_out_gga3(underscore, 0_0, 0_0)
mult_3_in_gga3(X, s_11(Y), Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, W))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, W)) -> if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_in_gga3(W, X, Z))
sum_3_in_gga3(X, 0_0, X) -> sum_3_out_gga3(X, 0_0, X)
sum_3_in_gga3(X, s_11(Y), s_11(Z)) -> if_sum_3_in_1_gga4(X, Y, Z, sum_3_in_gga3(X, Y, Z))
if_sum_3_in_1_gga4(X, Y, Z, sum_3_out_gga3(X, Y, Z)) -> sum_3_out_gga3(X, s_11(Y), s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_out_gga3(W, X, Z)) -> mult_3_out_gga3(X, s_11(Y), Z)
if_p_1_in_2_g4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> if_p_1_in_3_g5(X, Y, Xs, Z, p_1_in_g1(._22(Z, Xs)))
if_p_1_in_3_g5(X, Y, Xs, Z, p_1_out_g1(._22(Z, Xs))) -> p_1_out_g1(._22(s_11(s_11(X)), ._22(Y, Xs)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
p_1_in_g1(._22(X, []_0)) -> p_1_out_g1(._22(X, []_0))
p_1_in_g1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> if_p_1_in_1_g4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
p_1_in_g1(._22(0_0, Xs)) -> if_p_1_in_4_g2(Xs, p_1_in_g1(Xs))
if_p_1_in_4_g2(Xs, p_1_out_g1(Xs)) -> p_1_out_g1(._22(0_0, Xs))
if_p_1_in_1_g4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> if_p_1_in_2_g4(X, Y, Xs, mult_3_in_gga3(X, Y, Z))
mult_3_in_gga3(underscore, 0_0, 0_0) -> mult_3_out_gga3(underscore, 0_0, 0_0)
mult_3_in_gga3(X, s_11(Y), Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, W))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, W)) -> if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_in_gga3(W, X, Z))
sum_3_in_gga3(X, 0_0, X) -> sum_3_out_gga3(X, 0_0, X)
sum_3_in_gga3(X, s_11(Y), s_11(Z)) -> if_sum_3_in_1_gga4(X, Y, Z, sum_3_in_gga3(X, Y, Z))
if_sum_3_in_1_gga4(X, Y, Z, sum_3_out_gga3(X, Y, Z)) -> sum_3_out_gga3(X, s_11(Y), s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_out_gga3(W, X, Z)) -> mult_3_out_gga3(X, s_11(Y), Z)
if_p_1_in_2_g4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> if_p_1_in_3_g5(X, Y, Xs, Z, p_1_in_g1(._22(Z, Xs)))
if_p_1_in_3_g5(X, Y, Xs, Z, p_1_out_g1(._22(Z, Xs))) -> p_1_out_g1(._22(s_11(s_11(X)), ._22(Y, Xs)))
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> IF_P_1_IN_1_G4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> P_1_IN_G1(._22(X, ._22(Y, Xs)))
P_1_IN_G1(._22(0_0, Xs)) -> IF_P_1_IN_4_G2(Xs, p_1_in_g1(Xs))
P_1_IN_G1(._22(0_0, Xs)) -> P_1_IN_G1(Xs)
IF_P_1_IN_1_G4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> IF_P_1_IN_2_G4(X, Y, Xs, mult_3_in_gga3(X, Y, Z))
IF_P_1_IN_1_G4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> MULT_3_IN_GGA3(X, Y, Z)
MULT_3_IN_GGA3(X, s_11(Y), Z) -> IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_in_gga3(X, Y, W))
MULT_3_IN_GGA3(X, s_11(Y), Z) -> MULT_3_IN_GGA3(X, Y, W)
IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_out_gga3(X, Y, W)) -> IF_MULT_3_IN_2_GGA5(X, Y, Z, W, sum_3_in_gga3(W, X, Z))
IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_out_gga3(X, Y, W)) -> SUM_3_IN_GGA3(W, X, Z)
SUM_3_IN_GGA3(X, s_11(Y), s_11(Z)) -> IF_SUM_3_IN_1_GGA4(X, Y, Z, sum_3_in_gga3(X, Y, Z))
SUM_3_IN_GGA3(X, s_11(Y), s_11(Z)) -> SUM_3_IN_GGA3(X, Y, Z)
IF_P_1_IN_2_G4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> IF_P_1_IN_3_G5(X, Y, Xs, Z, p_1_in_g1(._22(Z, Xs)))
IF_P_1_IN_2_G4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> P_1_IN_G1(._22(Z, Xs))
p_1_in_g1(._22(X, []_0)) -> p_1_out_g1(._22(X, []_0))
p_1_in_g1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> if_p_1_in_1_g4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
p_1_in_g1(._22(0_0, Xs)) -> if_p_1_in_4_g2(Xs, p_1_in_g1(Xs))
if_p_1_in_4_g2(Xs, p_1_out_g1(Xs)) -> p_1_out_g1(._22(0_0, Xs))
if_p_1_in_1_g4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> if_p_1_in_2_g4(X, Y, Xs, mult_3_in_gga3(X, Y, Z))
mult_3_in_gga3(underscore, 0_0, 0_0) -> mult_3_out_gga3(underscore, 0_0, 0_0)
mult_3_in_gga3(X, s_11(Y), Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, W))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, W)) -> if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_in_gga3(W, X, Z))
sum_3_in_gga3(X, 0_0, X) -> sum_3_out_gga3(X, 0_0, X)
sum_3_in_gga3(X, s_11(Y), s_11(Z)) -> if_sum_3_in_1_gga4(X, Y, Z, sum_3_in_gga3(X, Y, Z))
if_sum_3_in_1_gga4(X, Y, Z, sum_3_out_gga3(X, Y, Z)) -> sum_3_out_gga3(X, s_11(Y), s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_out_gga3(W, X, Z)) -> mult_3_out_gga3(X, s_11(Y), Z)
if_p_1_in_2_g4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> if_p_1_in_3_g5(X, Y, Xs, Z, p_1_in_g1(._22(Z, Xs)))
if_p_1_in_3_g5(X, Y, Xs, Z, p_1_out_g1(._22(Z, Xs))) -> p_1_out_g1(._22(s_11(s_11(X)), ._22(Y, Xs)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> IF_P_1_IN_1_G4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> P_1_IN_G1(._22(X, ._22(Y, Xs)))
P_1_IN_G1(._22(0_0, Xs)) -> IF_P_1_IN_4_G2(Xs, p_1_in_g1(Xs))
P_1_IN_G1(._22(0_0, Xs)) -> P_1_IN_G1(Xs)
IF_P_1_IN_1_G4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> IF_P_1_IN_2_G4(X, Y, Xs, mult_3_in_gga3(X, Y, Z))
IF_P_1_IN_1_G4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> MULT_3_IN_GGA3(X, Y, Z)
MULT_3_IN_GGA3(X, s_11(Y), Z) -> IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_in_gga3(X, Y, W))
MULT_3_IN_GGA3(X, s_11(Y), Z) -> MULT_3_IN_GGA3(X, Y, W)
IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_out_gga3(X, Y, W)) -> IF_MULT_3_IN_2_GGA5(X, Y, Z, W, sum_3_in_gga3(W, X, Z))
IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_out_gga3(X, Y, W)) -> SUM_3_IN_GGA3(W, X, Z)
SUM_3_IN_GGA3(X, s_11(Y), s_11(Z)) -> IF_SUM_3_IN_1_GGA4(X, Y, Z, sum_3_in_gga3(X, Y, Z))
SUM_3_IN_GGA3(X, s_11(Y), s_11(Z)) -> SUM_3_IN_GGA3(X, Y, Z)
IF_P_1_IN_2_G4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> IF_P_1_IN_3_G5(X, Y, Xs, Z, p_1_in_g1(._22(Z, Xs)))
IF_P_1_IN_2_G4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> P_1_IN_G1(._22(Z, Xs))
p_1_in_g1(._22(X, []_0)) -> p_1_out_g1(._22(X, []_0))
p_1_in_g1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> if_p_1_in_1_g4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
p_1_in_g1(._22(0_0, Xs)) -> if_p_1_in_4_g2(Xs, p_1_in_g1(Xs))
if_p_1_in_4_g2(Xs, p_1_out_g1(Xs)) -> p_1_out_g1(._22(0_0, Xs))
if_p_1_in_1_g4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> if_p_1_in_2_g4(X, Y, Xs, mult_3_in_gga3(X, Y, Z))
mult_3_in_gga3(underscore, 0_0, 0_0) -> mult_3_out_gga3(underscore, 0_0, 0_0)
mult_3_in_gga3(X, s_11(Y), Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, W))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, W)) -> if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_in_gga3(W, X, Z))
sum_3_in_gga3(X, 0_0, X) -> sum_3_out_gga3(X, 0_0, X)
sum_3_in_gga3(X, s_11(Y), s_11(Z)) -> if_sum_3_in_1_gga4(X, Y, Z, sum_3_in_gga3(X, Y, Z))
if_sum_3_in_1_gga4(X, Y, Z, sum_3_out_gga3(X, Y, Z)) -> sum_3_out_gga3(X, s_11(Y), s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_out_gga3(W, X, Z)) -> mult_3_out_gga3(X, s_11(Y), Z)
if_p_1_in_2_g4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> if_p_1_in_3_g5(X, Y, Xs, Z, p_1_in_g1(._22(Z, Xs)))
if_p_1_in_3_g5(X, Y, Xs, Z, p_1_out_g1(._22(Z, Xs))) -> p_1_out_g1(._22(s_11(s_11(X)), ._22(Y, Xs)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
SUM_3_IN_GGA3(X, s_11(Y), s_11(Z)) -> SUM_3_IN_GGA3(X, Y, Z)
p_1_in_g1(._22(X, []_0)) -> p_1_out_g1(._22(X, []_0))
p_1_in_g1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> if_p_1_in_1_g4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
p_1_in_g1(._22(0_0, Xs)) -> if_p_1_in_4_g2(Xs, p_1_in_g1(Xs))
if_p_1_in_4_g2(Xs, p_1_out_g1(Xs)) -> p_1_out_g1(._22(0_0, Xs))
if_p_1_in_1_g4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> if_p_1_in_2_g4(X, Y, Xs, mult_3_in_gga3(X, Y, Z))
mult_3_in_gga3(underscore, 0_0, 0_0) -> mult_3_out_gga3(underscore, 0_0, 0_0)
mult_3_in_gga3(X, s_11(Y), Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, W))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, W)) -> if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_in_gga3(W, X, Z))
sum_3_in_gga3(X, 0_0, X) -> sum_3_out_gga3(X, 0_0, X)
sum_3_in_gga3(X, s_11(Y), s_11(Z)) -> if_sum_3_in_1_gga4(X, Y, Z, sum_3_in_gga3(X, Y, Z))
if_sum_3_in_1_gga4(X, Y, Z, sum_3_out_gga3(X, Y, Z)) -> sum_3_out_gga3(X, s_11(Y), s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_out_gga3(W, X, Z)) -> mult_3_out_gga3(X, s_11(Y), Z)
if_p_1_in_2_g4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> if_p_1_in_3_g5(X, Y, Xs, Z, p_1_in_g1(._22(Z, Xs)))
if_p_1_in_3_g5(X, Y, Xs, Z, p_1_out_g1(._22(Z, Xs))) -> p_1_out_g1(._22(s_11(s_11(X)), ._22(Y, Xs)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
SUM_3_IN_GGA3(X, s_11(Y), s_11(Z)) -> SUM_3_IN_GGA3(X, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
SUM_3_IN_GGA2(X, s_11(Y)) -> SUM_3_IN_GGA2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
MULT_3_IN_GGA3(X, s_11(Y), Z) -> MULT_3_IN_GGA3(X, Y, W)
p_1_in_g1(._22(X, []_0)) -> p_1_out_g1(._22(X, []_0))
p_1_in_g1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> if_p_1_in_1_g4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
p_1_in_g1(._22(0_0, Xs)) -> if_p_1_in_4_g2(Xs, p_1_in_g1(Xs))
if_p_1_in_4_g2(Xs, p_1_out_g1(Xs)) -> p_1_out_g1(._22(0_0, Xs))
if_p_1_in_1_g4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> if_p_1_in_2_g4(X, Y, Xs, mult_3_in_gga3(X, Y, Z))
mult_3_in_gga3(underscore, 0_0, 0_0) -> mult_3_out_gga3(underscore, 0_0, 0_0)
mult_3_in_gga3(X, s_11(Y), Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, W))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, W)) -> if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_in_gga3(W, X, Z))
sum_3_in_gga3(X, 0_0, X) -> sum_3_out_gga3(X, 0_0, X)
sum_3_in_gga3(X, s_11(Y), s_11(Z)) -> if_sum_3_in_1_gga4(X, Y, Z, sum_3_in_gga3(X, Y, Z))
if_sum_3_in_1_gga4(X, Y, Z, sum_3_out_gga3(X, Y, Z)) -> sum_3_out_gga3(X, s_11(Y), s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_out_gga3(W, X, Z)) -> mult_3_out_gga3(X, s_11(Y), Z)
if_p_1_in_2_g4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> if_p_1_in_3_g5(X, Y, Xs, Z, p_1_in_g1(._22(Z, Xs)))
if_p_1_in_3_g5(X, Y, Xs, Z, p_1_out_g1(._22(Z, Xs))) -> p_1_out_g1(._22(s_11(s_11(X)), ._22(Y, Xs)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
MULT_3_IN_GGA3(X, s_11(Y), Z) -> MULT_3_IN_GGA3(X, Y, W)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
MULT_3_IN_GGA2(X, s_11(Y)) -> MULT_3_IN_GGA2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> IF_P_1_IN_1_G4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
IF_P_1_IN_2_G4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> P_1_IN_G1(._22(Z, Xs))
P_1_IN_G1(._22(0_0, Xs)) -> P_1_IN_G1(Xs)
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> P_1_IN_G1(._22(X, ._22(Y, Xs)))
IF_P_1_IN_1_G4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> IF_P_1_IN_2_G4(X, Y, Xs, mult_3_in_gga3(X, Y, Z))
p_1_in_g1(._22(X, []_0)) -> p_1_out_g1(._22(X, []_0))
p_1_in_g1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> if_p_1_in_1_g4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
p_1_in_g1(._22(0_0, Xs)) -> if_p_1_in_4_g2(Xs, p_1_in_g1(Xs))
if_p_1_in_4_g2(Xs, p_1_out_g1(Xs)) -> p_1_out_g1(._22(0_0, Xs))
if_p_1_in_1_g4(X, Y, Xs, p_1_out_g1(._22(X, ._22(Y, Xs)))) -> if_p_1_in_2_g4(X, Y, Xs, mult_3_in_gga3(X, Y, Z))
mult_3_in_gga3(underscore, 0_0, 0_0) -> mult_3_out_gga3(underscore, 0_0, 0_0)
mult_3_in_gga3(X, s_11(Y), Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, W))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, W)) -> if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_in_gga3(W, X, Z))
sum_3_in_gga3(X, 0_0, X) -> sum_3_out_gga3(X, 0_0, X)
sum_3_in_gga3(X, s_11(Y), s_11(Z)) -> if_sum_3_in_1_gga4(X, Y, Z, sum_3_in_gga3(X, Y, Z))
if_sum_3_in_1_gga4(X, Y, Z, sum_3_out_gga3(X, Y, Z)) -> sum_3_out_gga3(X, s_11(Y), s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, W, sum_3_out_gga3(W, X, Z)) -> mult_3_out_gga3(X, s_11(Y), Z)
if_p_1_in_2_g4(X, Y, Xs, mult_3_out_gga3(X, Y, Z)) -> if_p_1_in_3_g5(X, Y, Xs, Z, p_1_in_g1(._22(Z, Xs)))
if_p_1_in_3_g5(X, Y, Xs, Z, p_1_out_g1(._22(Z, Xs))) -> p_1_out_g1(._22(s_11(s_11(X)), ._22(Y, Xs)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> IF_P_1_IN_1_G4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
IF_P_1_IN_2_G2(Xs, mult_3_out_gga1(Z)) -> P_1_IN_G1(._22(Z, Xs))
P_1_IN_G1(._22(0_0, Xs)) -> P_1_IN_G1(Xs)
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> P_1_IN_G1(._22(X, ._22(Y, Xs)))
IF_P_1_IN_1_G4(X, Y, Xs, p_1_out_g) -> IF_P_1_IN_2_G2(Xs, mult_3_in_gga2(X, Y))
p_1_in_g1(._22(X, []_0)) -> p_1_out_g
p_1_in_g1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> if_p_1_in_1_g4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
p_1_in_g1(._22(0_0, Xs)) -> if_p_1_in_4_g1(p_1_in_g1(Xs))
if_p_1_in_4_g1(p_1_out_g) -> p_1_out_g
if_p_1_in_1_g4(X, Y, Xs, p_1_out_g) -> if_p_1_in_2_g2(Xs, mult_3_in_gga2(X, Y))
mult_3_in_gga2(underscore, 0_0) -> mult_3_out_gga1(0_0)
mult_3_in_gga2(X, s_11(Y)) -> if_mult_3_in_1_gga2(X, mult_3_in_gga2(X, Y))
if_mult_3_in_1_gga2(X, mult_3_out_gga1(W)) -> if_mult_3_in_2_gga1(sum_3_in_gga2(W, X))
sum_3_in_gga2(X, 0_0) -> sum_3_out_gga1(X)
sum_3_in_gga2(X, s_11(Y)) -> if_sum_3_in_1_gga1(sum_3_in_gga2(X, Y))
if_sum_3_in_1_gga1(sum_3_out_gga1(Z)) -> sum_3_out_gga1(s_11(Z))
if_mult_3_in_2_gga1(sum_3_out_gga1(Z)) -> mult_3_out_gga1(Z)
if_p_1_in_2_g2(Xs, mult_3_out_gga1(Z)) -> if_p_1_in_3_g1(p_1_in_g1(._22(Z, Xs)))
if_p_1_in_3_g1(p_1_out_g) -> p_1_out_g
p_1_in_g1(x0)
if_p_1_in_4_g1(x0)
if_p_1_in_1_g4(x0, x1, x2, x3)
mult_3_in_gga2(x0, x1)
if_mult_3_in_1_gga2(x0, x1)
sum_3_in_gga2(x0, x1)
if_sum_3_in_1_gga1(x0)
if_mult_3_in_2_gga1(x0)
if_p_1_in_2_g2(x0, x1)
if_p_1_in_3_g1(x0)
The remaining Dependency Pairs were at least non-strictly be oriented.
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> IF_P_1_IN_1_G4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
P_1_IN_G1(._22(0_0, Xs)) -> P_1_IN_G1(Xs)
With the implicit AFS there is no usable rule.
IF_P_1_IN_2_G2(Xs, mult_3_out_gga1(Z)) -> P_1_IN_G1(._22(Z, Xs))
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> P_1_IN_G1(._22(X, ._22(Y, Xs)))
IF_P_1_IN_1_G4(X, Y, Xs, p_1_out_g) -> IF_P_1_IN_2_G2(Xs, mult_3_in_gga2(X, Y))
Used ordering: POLO with Polynomial interpretation:
POL(if_mult_3_in_2_gga1(x1)) = 0
POL(0_0) = 0
POL(IF_P_1_IN_1_G4(x1, x2, x3, x4)) = 1 + x3
POL(if_p_1_in_2_g2(x1, x2)) = 0
POL(sum_3_out_gga1(x1)) = 0
POL(mult_3_in_gga2(x1, x2)) = 0
POL(if_p_1_in_3_g1(x1)) = 0
POL([]_0) = 0
POL(p_1_in_g1(x1)) = 0
POL(P_1_IN_G1(x1)) = x1
POL(p_1_out_g) = 0
POL(if_mult_3_in_1_gga2(x1, x2)) = 0
POL(._22(x1, x2)) = 1 + x2
POL(if_p_1_in_4_g1(x1)) = 0
POL(if_sum_3_in_1_gga1(x1)) = 0
POL(IF_P_1_IN_2_G2(x1, x2)) = 1 + x1
POL(sum_3_in_gga2(x1, x2)) = 0
POL(s_11(x1)) = 0
POL(if_p_1_in_1_g4(x1, x2, x3, x4)) = 0
POL(mult_3_out_gga1(x1)) = 0
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
IF_P_1_IN_2_G2(Xs, mult_3_out_gga1(Z)) -> P_1_IN_G1(._22(Z, Xs))
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> P_1_IN_G1(._22(X, ._22(Y, Xs)))
IF_P_1_IN_1_G4(X, Y, Xs, p_1_out_g) -> IF_P_1_IN_2_G2(Xs, mult_3_in_gga2(X, Y))
p_1_in_g1(._22(X, []_0)) -> p_1_out_g
p_1_in_g1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> if_p_1_in_1_g4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
p_1_in_g1(._22(0_0, Xs)) -> if_p_1_in_4_g1(p_1_in_g1(Xs))
if_p_1_in_4_g1(p_1_out_g) -> p_1_out_g
if_p_1_in_1_g4(X, Y, Xs, p_1_out_g) -> if_p_1_in_2_g2(Xs, mult_3_in_gga2(X, Y))
mult_3_in_gga2(underscore, 0_0) -> mult_3_out_gga1(0_0)
mult_3_in_gga2(X, s_11(Y)) -> if_mult_3_in_1_gga2(X, mult_3_in_gga2(X, Y))
if_mult_3_in_1_gga2(X, mult_3_out_gga1(W)) -> if_mult_3_in_2_gga1(sum_3_in_gga2(W, X))
sum_3_in_gga2(X, 0_0) -> sum_3_out_gga1(X)
sum_3_in_gga2(X, s_11(Y)) -> if_sum_3_in_1_gga1(sum_3_in_gga2(X, Y))
if_sum_3_in_1_gga1(sum_3_out_gga1(Z)) -> sum_3_out_gga1(s_11(Z))
if_mult_3_in_2_gga1(sum_3_out_gga1(Z)) -> mult_3_out_gga1(Z)
if_p_1_in_2_g2(Xs, mult_3_out_gga1(Z)) -> if_p_1_in_3_g1(p_1_in_g1(._22(Z, Xs)))
if_p_1_in_3_g1(p_1_out_g) -> p_1_out_g
p_1_in_g1(x0)
if_p_1_in_4_g1(x0)
if_p_1_in_1_g4(x0, x1, x2, x3)
mult_3_in_gga2(x0, x1)
if_mult_3_in_1_gga2(x0, x1)
sum_3_in_gga2(x0, x1)
if_sum_3_in_1_gga1(x0)
if_mult_3_in_2_gga1(x0)
if_p_1_in_2_g2(x0, x1)
if_p_1_in_3_g1(x0)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> P_1_IN_G1(._22(X, ._22(Y, Xs)))
p_1_in_g1(._22(X, []_0)) -> p_1_out_g
p_1_in_g1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> if_p_1_in_1_g4(X, Y, Xs, p_1_in_g1(._22(X, ._22(Y, Xs))))
p_1_in_g1(._22(0_0, Xs)) -> if_p_1_in_4_g1(p_1_in_g1(Xs))
if_p_1_in_4_g1(p_1_out_g) -> p_1_out_g
if_p_1_in_1_g4(X, Y, Xs, p_1_out_g) -> if_p_1_in_2_g2(Xs, mult_3_in_gga2(X, Y))
mult_3_in_gga2(underscore, 0_0) -> mult_3_out_gga1(0_0)
mult_3_in_gga2(X, s_11(Y)) -> if_mult_3_in_1_gga2(X, mult_3_in_gga2(X, Y))
if_mult_3_in_1_gga2(X, mult_3_out_gga1(W)) -> if_mult_3_in_2_gga1(sum_3_in_gga2(W, X))
sum_3_in_gga2(X, 0_0) -> sum_3_out_gga1(X)
sum_3_in_gga2(X, s_11(Y)) -> if_sum_3_in_1_gga1(sum_3_in_gga2(X, Y))
if_sum_3_in_1_gga1(sum_3_out_gga1(Z)) -> sum_3_out_gga1(s_11(Z))
if_mult_3_in_2_gga1(sum_3_out_gga1(Z)) -> mult_3_out_gga1(Z)
if_p_1_in_2_g2(Xs, mult_3_out_gga1(Z)) -> if_p_1_in_3_g1(p_1_in_g1(._22(Z, Xs)))
if_p_1_in_3_g1(p_1_out_g) -> p_1_out_g
p_1_in_g1(x0)
if_p_1_in_4_g1(x0)
if_p_1_in_1_g4(x0, x1, x2, x3)
mult_3_in_gga2(x0, x1)
if_mult_3_in_1_gga2(x0, x1)
sum_3_in_gga2(x0, x1)
if_sum_3_in_1_gga1(x0)
if_mult_3_in_2_gga1(x0)
if_p_1_in_2_g2(x0, x1)
if_p_1_in_3_g1(x0)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
P_1_IN_G1(._22(s_11(s_11(X)), ._22(Y, Xs))) -> P_1_IN_G1(._22(X, ._22(Y, Xs)))
p_1_in_g1(x0)
if_p_1_in_4_g1(x0)
if_p_1_in_1_g4(x0, x1, x2, x3)
mult_3_in_gga2(x0, x1)
if_mult_3_in_1_gga2(x0, x1)
sum_3_in_gga2(x0, x1)
if_sum_3_in_1_gga1(x0)
if_mult_3_in_2_gga1(x0)
if_p_1_in_2_g2(x0, x1)
if_p_1_in_3_g1(x0)
Order:Homeomorphic Embedding Order
AFS:
s_11(x1) = s_11(x1)
._22(x1, x2) = x1
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules.
none