Left Termination of the query pattern minimum(f,b) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

minimum2(tree3(X, void0, underscore), X).
minimum2(tree3(underscore1, Left, underscore2), X) :- minimum2(Left, X).


With regard to the inferred argument filtering the predicates were used in the following modes:
minimum2: (f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


minimum_2_in_ag2(tree_33(X, void_0, underscore), X) -> minimum_2_out_ag2(tree_33(X, void_0, underscore), X)
minimum_2_in_ag2(tree_33(underscore1, Left, underscore2), X) -> if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_out_ag2(Left, X)) -> minimum_2_out_ag2(tree_33(underscore1, Left, underscore2), X)

The argument filtering Pi contains the following mapping:
minimum_2_in_ag2(x1, x2)  =  minimum_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
minimum_2_out_ag2(x1, x2)  =  minimum_2_out_ag1(x1)
if_minimum_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_minimum_2_in_1_ag1(x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

minimum_2_in_ag2(tree_33(X, void_0, underscore), X) -> minimum_2_out_ag2(tree_33(X, void_0, underscore), X)
minimum_2_in_ag2(tree_33(underscore1, Left, underscore2), X) -> if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_out_ag2(Left, X)) -> minimum_2_out_ag2(tree_33(underscore1, Left, underscore2), X)

The argument filtering Pi contains the following mapping:
minimum_2_in_ag2(x1, x2)  =  minimum_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
minimum_2_out_ag2(x1, x2)  =  minimum_2_out_ag1(x1)
if_minimum_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_minimum_2_in_1_ag1(x5)


Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> IF_MINIMUM_2_IN_1_AG5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> MINIMUM_2_IN_AG2(Left, X)

The TRS R consists of the following rules:

minimum_2_in_ag2(tree_33(X, void_0, underscore), X) -> minimum_2_out_ag2(tree_33(X, void_0, underscore), X)
minimum_2_in_ag2(tree_33(underscore1, Left, underscore2), X) -> if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_out_ag2(Left, X)) -> minimum_2_out_ag2(tree_33(underscore1, Left, underscore2), X)

The argument filtering Pi contains the following mapping:
minimum_2_in_ag2(x1, x2)  =  minimum_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
minimum_2_out_ag2(x1, x2)  =  minimum_2_out_ag1(x1)
if_minimum_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_minimum_2_in_1_ag1(x5)
MINIMUM_2_IN_AG2(x1, x2)  =  MINIMUM_2_IN_AG1(x2)
IF_MINIMUM_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_MINIMUM_2_IN_1_AG1(x5)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> IF_MINIMUM_2_IN_1_AG5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> MINIMUM_2_IN_AG2(Left, X)

The TRS R consists of the following rules:

minimum_2_in_ag2(tree_33(X, void_0, underscore), X) -> minimum_2_out_ag2(tree_33(X, void_0, underscore), X)
minimum_2_in_ag2(tree_33(underscore1, Left, underscore2), X) -> if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_out_ag2(Left, X)) -> minimum_2_out_ag2(tree_33(underscore1, Left, underscore2), X)

The argument filtering Pi contains the following mapping:
minimum_2_in_ag2(x1, x2)  =  minimum_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
minimum_2_out_ag2(x1, x2)  =  minimum_2_out_ag1(x1)
if_minimum_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_minimum_2_in_1_ag1(x5)
MINIMUM_2_IN_AG2(x1, x2)  =  MINIMUM_2_IN_AG1(x2)
IF_MINIMUM_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_MINIMUM_2_IN_1_AG1(x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 1 less node.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> MINIMUM_2_IN_AG2(Left, X)

The TRS R consists of the following rules:

minimum_2_in_ag2(tree_33(X, void_0, underscore), X) -> minimum_2_out_ag2(tree_33(X, void_0, underscore), X)
minimum_2_in_ag2(tree_33(underscore1, Left, underscore2), X) -> if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_out_ag2(Left, X)) -> minimum_2_out_ag2(tree_33(underscore1, Left, underscore2), X)

The argument filtering Pi contains the following mapping:
minimum_2_in_ag2(x1, x2)  =  minimum_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
minimum_2_out_ag2(x1, x2)  =  minimum_2_out_ag1(x1)
if_minimum_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_minimum_2_in_1_ag1(x5)
MINIMUM_2_IN_AG2(x1, x2)  =  MINIMUM_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> MINIMUM_2_IN_AG2(Left, X)

R is empty.
The argument filtering Pi contains the following mapping:
tree_33(x1, x2, x3)  =  tree_31(x2)
MINIMUM_2_IN_AG2(x1, x2)  =  MINIMUM_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

MINIMUM_2_IN_AG1(X) -> MINIMUM_2_IN_AG1(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {MINIMUM_2_IN_AG1}.
With regard to the inferred argument filtering the predicates were used in the following modes:
minimum2: (f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

minimum_2_in_ag2(tree_33(X, void_0, underscore), X) -> minimum_2_out_ag2(tree_33(X, void_0, underscore), X)
minimum_2_in_ag2(tree_33(underscore1, Left, underscore2), X) -> if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_out_ag2(Left, X)) -> minimum_2_out_ag2(tree_33(underscore1, Left, underscore2), X)

The argument filtering Pi contains the following mapping:
minimum_2_in_ag2(x1, x2)  =  minimum_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
minimum_2_out_ag2(x1, x2)  =  minimum_2_out_ag2(x1, x2)
if_minimum_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_minimum_2_in_1_ag2(x4, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

minimum_2_in_ag2(tree_33(X, void_0, underscore), X) -> minimum_2_out_ag2(tree_33(X, void_0, underscore), X)
minimum_2_in_ag2(tree_33(underscore1, Left, underscore2), X) -> if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_out_ag2(Left, X)) -> minimum_2_out_ag2(tree_33(underscore1, Left, underscore2), X)

The argument filtering Pi contains the following mapping:
minimum_2_in_ag2(x1, x2)  =  minimum_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
minimum_2_out_ag2(x1, x2)  =  minimum_2_out_ag2(x1, x2)
if_minimum_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_minimum_2_in_1_ag2(x4, x5)


Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> IF_MINIMUM_2_IN_1_AG5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> MINIMUM_2_IN_AG2(Left, X)

The TRS R consists of the following rules:

minimum_2_in_ag2(tree_33(X, void_0, underscore), X) -> minimum_2_out_ag2(tree_33(X, void_0, underscore), X)
minimum_2_in_ag2(tree_33(underscore1, Left, underscore2), X) -> if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_out_ag2(Left, X)) -> minimum_2_out_ag2(tree_33(underscore1, Left, underscore2), X)

The argument filtering Pi contains the following mapping:
minimum_2_in_ag2(x1, x2)  =  minimum_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
minimum_2_out_ag2(x1, x2)  =  minimum_2_out_ag2(x1, x2)
if_minimum_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_minimum_2_in_1_ag2(x4, x5)
MINIMUM_2_IN_AG2(x1, x2)  =  MINIMUM_2_IN_AG1(x2)
IF_MINIMUM_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_MINIMUM_2_IN_1_AG2(x4, x5)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> IF_MINIMUM_2_IN_1_AG5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> MINIMUM_2_IN_AG2(Left, X)

The TRS R consists of the following rules:

minimum_2_in_ag2(tree_33(X, void_0, underscore), X) -> minimum_2_out_ag2(tree_33(X, void_0, underscore), X)
minimum_2_in_ag2(tree_33(underscore1, Left, underscore2), X) -> if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_out_ag2(Left, X)) -> minimum_2_out_ag2(tree_33(underscore1, Left, underscore2), X)

The argument filtering Pi contains the following mapping:
minimum_2_in_ag2(x1, x2)  =  minimum_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
minimum_2_out_ag2(x1, x2)  =  minimum_2_out_ag2(x1, x2)
if_minimum_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_minimum_2_in_1_ag2(x4, x5)
MINIMUM_2_IN_AG2(x1, x2)  =  MINIMUM_2_IN_AG1(x2)
IF_MINIMUM_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_MINIMUM_2_IN_1_AG2(x4, x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 1 less node.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> MINIMUM_2_IN_AG2(Left, X)

The TRS R consists of the following rules:

minimum_2_in_ag2(tree_33(X, void_0, underscore), X) -> minimum_2_out_ag2(tree_33(X, void_0, underscore), X)
minimum_2_in_ag2(tree_33(underscore1, Left, underscore2), X) -> if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_in_ag2(Left, X))
if_minimum_2_in_1_ag5(underscore1, Left, underscore2, X, minimum_2_out_ag2(Left, X)) -> minimum_2_out_ag2(tree_33(underscore1, Left, underscore2), X)

The argument filtering Pi contains the following mapping:
minimum_2_in_ag2(x1, x2)  =  minimum_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
minimum_2_out_ag2(x1, x2)  =  minimum_2_out_ag2(x1, x2)
if_minimum_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_minimum_2_in_1_ag2(x4, x5)
MINIMUM_2_IN_AG2(x1, x2)  =  MINIMUM_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_2_IN_AG2(tree_33(underscore1, Left, underscore2), X) -> MINIMUM_2_IN_AG2(Left, X)

R is empty.
The argument filtering Pi contains the following mapping:
tree_33(x1, x2, x3)  =  tree_31(x2)
MINIMUM_2_IN_AG2(x1, x2)  =  MINIMUM_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP

Q DP problem:
The TRS P consists of the following rules:

MINIMUM_2_IN_AG1(X) -> MINIMUM_2_IN_AG1(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {MINIMUM_2_IN_AG1}.