Left Termination of the query pattern less(f,b) w.r.t. the given Prolog program could successfully be proven:
↳ PROLOG
↳ PrologToPiTRSProof
less2(00, s1(underscore)).
less2(s1(X), s1(Y)) :- less2(X, Y).
With regard to the inferred argument filtering the predicates were used in the following modes:
less2: (f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
less_2_in_ag2(0_0, s_11(underscore)) -> less_2_out_ag2(0_0, s_11(underscore))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_ag2(X, Y))
if_less_2_in_1_ag3(X, Y, less_2_out_ag2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
The argument filtering Pi contains the following mapping:
less_2_in_ag2(x1, x2) = less_2_in_ag1(x2)
0_0 = 0_0
s_11(x1) = s_11(x1)
less_2_out_ag2(x1, x2) = less_2_out_ag1(x1)
if_less_2_in_1_ag3(x1, x2, x3) = if_less_2_in_1_ag1(x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
less_2_in_ag2(0_0, s_11(underscore)) -> less_2_out_ag2(0_0, s_11(underscore))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_ag2(X, Y))
if_less_2_in_1_ag3(X, Y, less_2_out_ag2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
The argument filtering Pi contains the following mapping:
less_2_in_ag2(x1, x2) = less_2_in_ag1(x2)
0_0 = 0_0
s_11(x1) = s_11(x1)
less_2_out_ag2(x1, x2) = less_2_out_ag1(x1)
if_less_2_in_1_ag3(x1, x2, x3) = if_less_2_in_1_ag1(x3)
Pi DP problem:
The TRS P consists of the following rules:
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AG3(X, Y, less_2_in_ag2(X, Y))
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> LESS_2_IN_AG2(X, Y)
The TRS R consists of the following rules:
less_2_in_ag2(0_0, s_11(underscore)) -> less_2_out_ag2(0_0, s_11(underscore))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_ag2(X, Y))
if_less_2_in_1_ag3(X, Y, less_2_out_ag2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
The argument filtering Pi contains the following mapping:
less_2_in_ag2(x1, x2) = less_2_in_ag1(x2)
0_0 = 0_0
s_11(x1) = s_11(x1)
less_2_out_ag2(x1, x2) = less_2_out_ag1(x1)
if_less_2_in_1_ag3(x1, x2, x3) = if_less_2_in_1_ag1(x3)
LESS_2_IN_AG2(x1, x2) = LESS_2_IN_AG1(x2)
IF_LESS_2_IN_1_AG3(x1, x2, x3) = IF_LESS_2_IN_1_AG1(x3)
We have to consider all (P,R,Pi)-chains
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AG3(X, Y, less_2_in_ag2(X, Y))
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> LESS_2_IN_AG2(X, Y)
The TRS R consists of the following rules:
less_2_in_ag2(0_0, s_11(underscore)) -> less_2_out_ag2(0_0, s_11(underscore))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_ag2(X, Y))
if_less_2_in_1_ag3(X, Y, less_2_out_ag2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
The argument filtering Pi contains the following mapping:
less_2_in_ag2(x1, x2) = less_2_in_ag1(x2)
0_0 = 0_0
s_11(x1) = s_11(x1)
less_2_out_ag2(x1, x2) = less_2_out_ag1(x1)
if_less_2_in_1_ag3(x1, x2, x3) = if_less_2_in_1_ag1(x3)
LESS_2_IN_AG2(x1, x2) = LESS_2_IN_AG1(x2)
IF_LESS_2_IN_1_AG3(x1, x2, x3) = IF_LESS_2_IN_1_AG1(x3)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 1 less node.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> LESS_2_IN_AG2(X, Y)
The TRS R consists of the following rules:
less_2_in_ag2(0_0, s_11(underscore)) -> less_2_out_ag2(0_0, s_11(underscore))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_ag2(X, Y))
if_less_2_in_1_ag3(X, Y, less_2_out_ag2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
The argument filtering Pi contains the following mapping:
less_2_in_ag2(x1, x2) = less_2_in_ag1(x2)
0_0 = 0_0
s_11(x1) = s_11(x1)
less_2_out_ag2(x1, x2) = less_2_out_ag1(x1)
if_less_2_in_1_ag3(x1, x2, x3) = if_less_2_in_1_ag1(x3)
LESS_2_IN_AG2(x1, x2) = LESS_2_IN_AG1(x2)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> LESS_2_IN_AG2(X, Y)
R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1) = s_11(x1)
LESS_2_IN_AG2(x1, x2) = LESS_2_IN_AG1(x2)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
LESS_2_IN_AG1(s_11(Y)) -> LESS_2_IN_AG1(Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LESS_2_IN_AG1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- LESS_2_IN_AG1(s_11(Y)) -> LESS_2_IN_AG1(Y)
The graph contains the following edges 1 > 1