↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
insert3: (b,f,b)
less2: (b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
insert_3_in_gag3(X, void_0, tree_33(X, void_0, void_0)) -> insert_3_out_gag3(X, void_0, tree_33(X, void_0, void_0))
insert_3_in_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right)) -> insert_3_out_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore)) -> less_2_out_gg2(0_0, s_11(underscore))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_gg2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_gg2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_in_gag3(X, Left, Left1))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_in_gg2(Y, X))
if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_in_gag3(X, Right, Right1))
if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_out_gag3(X, Right, Right1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1))
if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_out_gag3(X, Left, Left1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
insert_3_in_gag3(X, void_0, tree_33(X, void_0, void_0)) -> insert_3_out_gag3(X, void_0, tree_33(X, void_0, void_0))
insert_3_in_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right)) -> insert_3_out_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore)) -> less_2_out_gg2(0_0, s_11(underscore))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_gg2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_gg2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_in_gag3(X, Left, Left1))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_in_gg2(Y, X))
if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_in_gag3(X, Right, Right1))
if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_out_gag3(X, Right, Right1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1))
if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_out_gag3(X, Left, Left1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right))
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> IF_INSERT_3_IN_1_GAG6(X, Y, Left, Right, Left1, less_2_in_gg2(X, Y))
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> LESS_2_IN_GG2(X, Y)
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GG3(X, Y, less_2_in_gg2(X, Y))
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> LESS_2_IN_GG2(X, Y)
IF_INSERT_3_IN_1_GAG6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> IF_INSERT_3_IN_2_GAG6(X, Y, Left, Right, Left1, insert_3_in_gag3(X, Left, Left1))
IF_INSERT_3_IN_1_GAG6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> INSERT_3_IN_GAG3(X, Left, Left1)
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> IF_INSERT_3_IN_3_GAG6(X, Y, Left, Right, Right1, less_2_in_gg2(Y, X))
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> LESS_2_IN_GG2(Y, X)
IF_INSERT_3_IN_3_GAG6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> IF_INSERT_3_IN_4_GAG6(X, Y, Left, Right, Right1, insert_3_in_gag3(X, Right, Right1))
IF_INSERT_3_IN_3_GAG6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> INSERT_3_IN_GAG3(X, Right, Right1)
insert_3_in_gag3(X, void_0, tree_33(X, void_0, void_0)) -> insert_3_out_gag3(X, void_0, tree_33(X, void_0, void_0))
insert_3_in_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right)) -> insert_3_out_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore)) -> less_2_out_gg2(0_0, s_11(underscore))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_gg2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_gg2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_in_gag3(X, Left, Left1))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_in_gg2(Y, X))
if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_in_gag3(X, Right, Right1))
if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_out_gag3(X, Right, Right1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1))
if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_out_gag3(X, Left, Left1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> IF_INSERT_3_IN_1_GAG6(X, Y, Left, Right, Left1, less_2_in_gg2(X, Y))
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> LESS_2_IN_GG2(X, Y)
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GG3(X, Y, less_2_in_gg2(X, Y))
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> LESS_2_IN_GG2(X, Y)
IF_INSERT_3_IN_1_GAG6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> IF_INSERT_3_IN_2_GAG6(X, Y, Left, Right, Left1, insert_3_in_gag3(X, Left, Left1))
IF_INSERT_3_IN_1_GAG6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> INSERT_3_IN_GAG3(X, Left, Left1)
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> IF_INSERT_3_IN_3_GAG6(X, Y, Left, Right, Right1, less_2_in_gg2(Y, X))
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> LESS_2_IN_GG2(Y, X)
IF_INSERT_3_IN_3_GAG6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> IF_INSERT_3_IN_4_GAG6(X, Y, Left, Right, Right1, insert_3_in_gag3(X, Right, Right1))
IF_INSERT_3_IN_3_GAG6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> INSERT_3_IN_GAG3(X, Right, Right1)
insert_3_in_gag3(X, void_0, tree_33(X, void_0, void_0)) -> insert_3_out_gag3(X, void_0, tree_33(X, void_0, void_0))
insert_3_in_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right)) -> insert_3_out_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore)) -> less_2_out_gg2(0_0, s_11(underscore))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_gg2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_gg2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_in_gag3(X, Left, Left1))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_in_gg2(Y, X))
if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_in_gag3(X, Right, Right1))
if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_out_gag3(X, Right, Right1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1))
if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_out_gag3(X, Left, Left1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> LESS_2_IN_GG2(X, Y)
insert_3_in_gag3(X, void_0, tree_33(X, void_0, void_0)) -> insert_3_out_gag3(X, void_0, tree_33(X, void_0, void_0))
insert_3_in_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right)) -> insert_3_out_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore)) -> less_2_out_gg2(0_0, s_11(underscore))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_gg2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_gg2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_in_gag3(X, Left, Left1))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_in_gg2(Y, X))
if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_in_gag3(X, Right, Right1))
if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_out_gag3(X, Right, Right1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1))
if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_out_gag3(X, Left, Left1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> LESS_2_IN_GG2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> LESS_2_IN_GG2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> IF_INSERT_3_IN_3_GAG6(X, Y, Left, Right, Right1, less_2_in_gg2(Y, X))
IF_INSERT_3_IN_3_GAG6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> INSERT_3_IN_GAG3(X, Right, Right1)
IF_INSERT_3_IN_1_GAG6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> INSERT_3_IN_GAG3(X, Left, Left1)
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> IF_INSERT_3_IN_1_GAG6(X, Y, Left, Right, Left1, less_2_in_gg2(X, Y))
insert_3_in_gag3(X, void_0, tree_33(X, void_0, void_0)) -> insert_3_out_gag3(X, void_0, tree_33(X, void_0, void_0))
insert_3_in_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right)) -> insert_3_out_gag3(X, tree_33(X, Left, Right), tree_33(X, Left, Right))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore)) -> less_2_out_gg2(0_0, s_11(underscore))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_gg2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_gg2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_insert_3_in_1_gag6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_in_gag3(X, Left, Left1))
insert_3_in_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_in_gg2(Y, X))
if_insert_3_in_3_gag6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_in_gag3(X, Right, Right1))
if_insert_3_in_4_gag6(X, Y, Left, Right, Right1, insert_3_out_gag3(X, Right, Right1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1))
if_insert_3_in_2_gag6(X, Y, Left, Right, Left1, insert_3_out_gag3(X, Left, Left1)) -> insert_3_out_gag3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left, Right1)) -> IF_INSERT_3_IN_3_GAG6(X, Y, Left, Right, Right1, less_2_in_gg2(Y, X))
IF_INSERT_3_IN_3_GAG6(X, Y, Left, Right, Right1, less_2_out_gg2(Y, X)) -> INSERT_3_IN_GAG3(X, Right, Right1)
IF_INSERT_3_IN_1_GAG6(X, Y, Left, Right, Left1, less_2_out_gg2(X, Y)) -> INSERT_3_IN_GAG3(X, Left, Left1)
INSERT_3_IN_GAG3(X, tree_33(Y, Left, Right), tree_33(Y, Left1, Right)) -> IF_INSERT_3_IN_1_GAG6(X, Y, Left, Right, Left1, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore)) -> less_2_out_gg2(0_0, s_11(underscore))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_gg2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_gg2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
INSERT_3_IN_GAG2(X, tree_33(Y, Left, Right1)) -> IF_INSERT_3_IN_3_GAG5(X, Y, Left, Right1, less_2_in_gg2(Y, X))
IF_INSERT_3_IN_3_GAG5(X, Y, Left, Right1, less_2_out_gg) -> INSERT_3_IN_GAG2(X, Right1)
IF_INSERT_3_IN_1_GAG5(X, Y, Right, Left1, less_2_out_gg) -> INSERT_3_IN_GAG2(X, Left1)
INSERT_3_IN_GAG2(X, tree_33(Y, Left1, Right)) -> IF_INSERT_3_IN_1_GAG5(X, Y, Right, Left1, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore)) -> less_2_out_gg
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg1(less_2_in_gg2(X, Y))
if_less_2_in_1_gg1(less_2_out_gg) -> less_2_out_gg
less_2_in_gg2(x0, x1)
if_less_2_in_1_gg1(x0)
From the DPs we obtained the following set of size-change graphs: