Left Termination of the query pattern in(f,b) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

in2(X, tree3(X, underscore, underscore1)).
in2(X, tree3(Y, Left, underscore2)) :- less2(X, Y), in2(X, Left).
in2(X, tree3(Y, underscore3, Right)) :- less2(Y, X), in2(X, Right).
less2(00, s1(underscore4)).
less2(s1(X), s1(Y)) :- less2(X, Y).


With regard to the inferred argument filtering the predicates were used in the following modes:
in2: (f,b) (b,b)
less2: (f,b) (f,f) (b,b) (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag1(x1)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag2(x3, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag1(x1)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag2(x1, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg3(x1, x3, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg1(x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg3(x1, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg1(x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag2(x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag2(x1, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag1(x1)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag2(x3, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag1(x1)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag2(x1, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg3(x1, x3, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg1(x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg3(x1, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg1(x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag2(x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag2(x1, x5)


Pi DP problem:
The TRS P consists of the following rules:

IN_2_IN_AG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
IN_2_IN_AG2(X, tree_33(Y, Left, underscore2)) -> LESS_2_IN_AG2(X, Y)
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AG3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> IF_IN_2_IN_2_AG5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> IN_2_IN_GG2(X, Left)
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> LESS_2_IN_GG2(X, Y)
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GG3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IF_IN_2_IN_2_GG5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IN_2_IN_GG2(X, Left)
IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> LESS_2_IN_GG2(Y, X)
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IF_IN_2_IN_4_GG5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IN_2_IN_GG2(X, Right)
IN_2_IN_AG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
IN_2_IN_AG2(X, tree_33(Y, underscore3, Right)) -> LESS_2_IN_GA2(Y, X)
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> IF_IN_2_IN_4_AG5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> IN_2_IN_GG2(X, Right)

The TRS R consists of the following rules:

in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag1(x1)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag2(x3, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag1(x1)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag2(x1, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg3(x1, x3, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg1(x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg3(x1, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg1(x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag2(x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag2(x1, x5)
IN_2_IN_AG2(x1, x2)  =  IN_2_IN_AG1(x2)
LESS_2_IN_GA2(x1, x2)  =  LESS_2_IN_GA1(x1)
LESS_2_IN_AG2(x1, x2)  =  LESS_2_IN_AG1(x2)
IF_LESS_2_IN_1_AG3(x1, x2, x3)  =  IF_LESS_2_IN_1_AG1(x3)
IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_GG3(x1, x4, x5)
IF_IN_2_IN_3_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_AG2(x4, x5)
IN_2_IN_GG2(x1, x2)  =  IN_2_IN_GG2(x1, x2)
IF_LESS_2_IN_1_AA3(x1, x2, x3)  =  IF_LESS_2_IN_1_AA1(x3)
IF_LESS_2_IN_1_GA3(x1, x2, x3)  =  IF_LESS_2_IN_1_GA1(x3)
IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_GG3(x1, x3, x5)
IF_IN_2_IN_2_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_2_GG1(x5)
IF_IN_2_IN_2_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_2_AG2(x1, x5)
IF_IN_2_IN_4_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_4_AG2(x1, x5)
IF_IN_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_AG2(x3, x5)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA
IF_LESS_2_IN_1_GG3(x1, x2, x3)  =  IF_LESS_2_IN_1_GG1(x3)
IF_IN_2_IN_4_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_4_GG1(x5)
LESS_2_IN_GG2(x1, x2)  =  LESS_2_IN_GG2(x1, x2)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IN_2_IN_AG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
IN_2_IN_AG2(X, tree_33(Y, Left, underscore2)) -> LESS_2_IN_AG2(X, Y)
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AG3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> IF_IN_2_IN_2_AG5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> IN_2_IN_GG2(X, Left)
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> LESS_2_IN_GG2(X, Y)
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GG3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IF_IN_2_IN_2_GG5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IN_2_IN_GG2(X, Left)
IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> LESS_2_IN_GG2(Y, X)
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IF_IN_2_IN_4_GG5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IN_2_IN_GG2(X, Right)
IN_2_IN_AG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
IN_2_IN_AG2(X, tree_33(Y, underscore3, Right)) -> LESS_2_IN_GA2(Y, X)
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> IF_IN_2_IN_4_AG5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> IN_2_IN_GG2(X, Right)

The TRS R consists of the following rules:

in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag1(x1)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag2(x3, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag1(x1)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag2(x1, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg3(x1, x3, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg1(x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg3(x1, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg1(x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag2(x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag2(x1, x5)
IN_2_IN_AG2(x1, x2)  =  IN_2_IN_AG1(x2)
LESS_2_IN_GA2(x1, x2)  =  LESS_2_IN_GA1(x1)
LESS_2_IN_AG2(x1, x2)  =  LESS_2_IN_AG1(x2)
IF_LESS_2_IN_1_AG3(x1, x2, x3)  =  IF_LESS_2_IN_1_AG1(x3)
IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_GG3(x1, x4, x5)
IF_IN_2_IN_3_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_AG2(x4, x5)
IN_2_IN_GG2(x1, x2)  =  IN_2_IN_GG2(x1, x2)
IF_LESS_2_IN_1_AA3(x1, x2, x3)  =  IF_LESS_2_IN_1_AA1(x3)
IF_LESS_2_IN_1_GA3(x1, x2, x3)  =  IF_LESS_2_IN_1_GA1(x3)
IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_GG3(x1, x3, x5)
IF_IN_2_IN_2_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_2_GG1(x5)
IF_IN_2_IN_2_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_2_AG2(x1, x5)
IF_IN_2_IN_4_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_4_AG2(x1, x5)
IF_IN_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_AG2(x3, x5)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA
IF_LESS_2_IN_1_GG3(x1, x2, x3)  =  IF_LESS_2_IN_1_GG1(x3)
IF_IN_2_IN_4_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_4_GG1(x5)
LESS_2_IN_GG2(x1, x2)  =  LESS_2_IN_GG2(x1, x2)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 19 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)

The TRS R consists of the following rules:

in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag1(x1)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag2(x3, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag1(x1)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag2(x1, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg3(x1, x3, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg1(x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg3(x1, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg1(x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag2(x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag2(x1, x5)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_1
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA -> LESS_2_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LESS_2_IN_AA}.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IN_2_IN_GG2(X, Left)
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IN_2_IN_GG2(X, Right)
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))

The TRS R consists of the following rules:

in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag1(x1)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag2(x3, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag1(x1)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag2(x1, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg3(x1, x3, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg1(x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg3(x1, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg1(x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag2(x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga1(x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag2(x1, x5)
IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_GG3(x1, x4, x5)
IN_2_IN_GG2(x1, x2)  =  IN_2_IN_GG2(x1, x2)
IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_GG3(x1, x3, x5)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IN_2_IN_GG2(X, Left)
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IN_2_IN_GG2(X, Right)
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))

The TRS R consists of the following rules:

less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_GG3(x1, x4, x5)
IN_2_IN_GG2(x1, x2)  =  IN_2_IN_GG2(x1, x2)
IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_GG3(x1, x3, x5)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_GG3(X, Right, less_2_in_gg2(Y, X))
IF_IN_2_IN_1_GG3(X, Left, less_2_out_gg) -> IN_2_IN_GG2(X, Left)
IF_IN_2_IN_3_GG3(X, Right, less_2_out_gg) -> IN_2_IN_GG2(X, Right)
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_GG3(X, Left, less_2_in_gg2(X, Y))

The TRS R consists of the following rules:

less_2_in_gg2(0_0, s_1) -> less_2_out_gg
less_2_in_gg2(s_1, s_1) -> if_less_2_in_1_gg1(less_2_in_aa)
if_less_2_in_1_gg1(less_2_out_aa2(X, Y)) -> less_2_out_gg
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_gg2(x0, x1)
if_less_2_in_1_gg1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_IN_2_IN_3_GG3, IN_2_IN_GG2, IF_IN_2_IN_1_GG3}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:


With regard to the inferred argument filtering the predicates were used in the following modes:
in2: (f,b) (b,b)
less2: (f,b) (f,f) (b,b) (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag2(x1, x2)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag4(x2, x3, x4, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag2(x1, x2)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag5(x1, x2, x3, x4, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg2(x1, x2)
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg5(x1, x2, x3, x4, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg2(x1, x2)
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg5(x1, x2, x3, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag4(x2, x3, x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag5(x1, x2, x3, x4, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag2(x1, x2)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag4(x2, x3, x4, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag2(x1, x2)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag5(x1, x2, x3, x4, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg2(x1, x2)
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg5(x1, x2, x3, x4, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg2(x1, x2)
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg5(x1, x2, x3, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag4(x2, x3, x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag5(x1, x2, x3, x4, x5)


Pi DP problem:
The TRS P consists of the following rules:

IN_2_IN_AG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
IN_2_IN_AG2(X, tree_33(Y, Left, underscore2)) -> LESS_2_IN_AG2(X, Y)
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AG3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> IF_IN_2_IN_2_AG5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> IN_2_IN_GG2(X, Left)
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> LESS_2_IN_GG2(X, Y)
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GG3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IF_IN_2_IN_2_GG5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IN_2_IN_GG2(X, Left)
IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> LESS_2_IN_GG2(Y, X)
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IF_IN_2_IN_4_GG5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IN_2_IN_GG2(X, Right)
IN_2_IN_AG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
IN_2_IN_AG2(X, tree_33(Y, underscore3, Right)) -> LESS_2_IN_GA2(Y, X)
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> IF_IN_2_IN_4_AG5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> IN_2_IN_GG2(X, Right)

The TRS R consists of the following rules:

in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag2(x1, x2)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag4(x2, x3, x4, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag2(x1, x2)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag5(x1, x2, x3, x4, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg2(x1, x2)
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg5(x1, x2, x3, x4, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg2(x1, x2)
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg5(x1, x2, x3, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag4(x2, x3, x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag5(x1, x2, x3, x4, x5)
IN_2_IN_AG2(x1, x2)  =  IN_2_IN_AG1(x2)
LESS_2_IN_GA2(x1, x2)  =  LESS_2_IN_GA1(x1)
LESS_2_IN_AG2(x1, x2)  =  LESS_2_IN_AG1(x2)
IF_LESS_2_IN_1_AG3(x1, x2, x3)  =  IF_LESS_2_IN_1_AG1(x3)
IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)
IF_IN_2_IN_3_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_AG4(x2, x3, x4, x5)
IN_2_IN_GG2(x1, x2)  =  IN_2_IN_GG2(x1, x2)
IF_LESS_2_IN_1_AA3(x1, x2, x3)  =  IF_LESS_2_IN_1_AA1(x3)
IF_LESS_2_IN_1_GA3(x1, x2, x3)  =  IF_LESS_2_IN_1_GA1(x3)
IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)
IF_IN_2_IN_2_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_2_GG5(x1, x2, x3, x4, x5)
IF_IN_2_IN_2_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_2_AG5(x1, x2, x3, x4, x5)
IF_IN_2_IN_4_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_4_AG5(x1, x2, x3, x4, x5)
IF_IN_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_AG4(x2, x3, x4, x5)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA
IF_LESS_2_IN_1_GG3(x1, x2, x3)  =  IF_LESS_2_IN_1_GG1(x3)
IF_IN_2_IN_4_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_4_GG5(x1, x2, x3, x4, x5)
LESS_2_IN_GG2(x1, x2)  =  LESS_2_IN_GG2(x1, x2)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

IN_2_IN_AG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
IN_2_IN_AG2(X, tree_33(Y, Left, underscore2)) -> LESS_2_IN_AG2(X, Y)
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AG3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AG2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_AA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> IF_IN_2_IN_2_AG5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
IF_IN_2_IN_1_AG5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> IN_2_IN_GG2(X, Left)
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> LESS_2_IN_GG2(X, Y)
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GG3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GG2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IF_IN_2_IN_2_GG5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IN_2_IN_GG2(X, Left)
IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> LESS_2_IN_GG2(Y, X)
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IF_IN_2_IN_4_GG5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IN_2_IN_GG2(X, Right)
IN_2_IN_AG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
IN_2_IN_AG2(X, tree_33(Y, underscore3, Right)) -> LESS_2_IN_GA2(Y, X)
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LESS_2_IN_1_GA3(X, Y, less_2_in_aa2(X, Y))
LESS_2_IN_GA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)
IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> IF_IN_2_IN_4_AG5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
IF_IN_2_IN_3_AG5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> IN_2_IN_GG2(X, Right)

The TRS R consists of the following rules:

in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag2(x1, x2)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag4(x2, x3, x4, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag2(x1, x2)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag5(x1, x2, x3, x4, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg2(x1, x2)
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg5(x1, x2, x3, x4, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg2(x1, x2)
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg5(x1, x2, x3, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag4(x2, x3, x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag5(x1, x2, x3, x4, x5)
IN_2_IN_AG2(x1, x2)  =  IN_2_IN_AG1(x2)
LESS_2_IN_GA2(x1, x2)  =  LESS_2_IN_GA1(x1)
LESS_2_IN_AG2(x1, x2)  =  LESS_2_IN_AG1(x2)
IF_LESS_2_IN_1_AG3(x1, x2, x3)  =  IF_LESS_2_IN_1_AG1(x3)
IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)
IF_IN_2_IN_3_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_AG4(x2, x3, x4, x5)
IN_2_IN_GG2(x1, x2)  =  IN_2_IN_GG2(x1, x2)
IF_LESS_2_IN_1_AA3(x1, x2, x3)  =  IF_LESS_2_IN_1_AA1(x3)
IF_LESS_2_IN_1_GA3(x1, x2, x3)  =  IF_LESS_2_IN_1_GA1(x3)
IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)
IF_IN_2_IN_2_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_2_GG5(x1, x2, x3, x4, x5)
IF_IN_2_IN_2_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_2_AG5(x1, x2, x3, x4, x5)
IF_IN_2_IN_4_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_4_AG5(x1, x2, x3, x4, x5)
IF_IN_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_AG4(x2, x3, x4, x5)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA
IF_LESS_2_IN_1_GG3(x1, x2, x3)  =  IF_LESS_2_IN_1_GG1(x3)
IF_IN_2_IN_4_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_4_GG5(x1, x2, x3, x4, x5)
LESS_2_IN_GG2(x1, x2)  =  LESS_2_IN_GG2(x1, x2)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 19 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)

The TRS R consists of the following rules:

in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag2(x1, x2)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag4(x2, x3, x4, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag2(x1, x2)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag5(x1, x2, x3, x4, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg2(x1, x2)
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg5(x1, x2, x3, x4, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg2(x1, x2)
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg5(x1, x2, x3, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag4(x2, x3, x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag5(x1, x2, x3, x4, x5)
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA2(s_11(X), s_11(Y)) -> LESS_2_IN_AA2(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_1
LESS_2_IN_AA2(x1, x2)  =  LESS_2_IN_AA

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

LESS_2_IN_AA -> LESS_2_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LESS_2_IN_AA}.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IN_2_IN_GG2(X, Left)
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IN_2_IN_GG2(X, Right)
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))

The TRS R consists of the following rules:

in_2_in_ag2(X, tree_33(X, underscore, underscore1)) -> in_2_out_ag2(X, tree_33(X, underscore, underscore1))
in_2_in_ag2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_in_ag2(X, Y))
less_2_in_ag2(0_0, s_11(underscore4)) -> less_2_out_ag2(0_0, s_11(underscore4))
less_2_in_ag2(s_11(X), s_11(Y)) -> if_less_2_in_1_ag3(X, Y, less_2_in_aa2(X, Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))
if_less_2_in_1_ag3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ag2(s_11(X), s_11(Y))
if_in_2_in_1_ag5(X, Y, Left, underscore2, less_2_out_ag2(X, Y)) -> if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(X, underscore, underscore1)) -> in_2_out_gg2(X, tree_33(X, underscore, underscore1))
in_2_in_gg2(X, tree_33(Y, Left, underscore2)) -> if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))
less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
if_in_2_in_1_gg5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_in_gg2(X, Left))
in_2_in_gg2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
if_in_2_in_3_gg5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_gg5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_gg2(X, tree_33(Y, underscore3, Right))
if_in_2_in_2_gg5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_gg2(X, tree_33(Y, Left, underscore2))
if_in_2_in_2_ag5(X, Y, Left, underscore2, in_2_out_gg2(X, Left)) -> in_2_out_ag2(X, tree_33(Y, Left, underscore2))
in_2_in_ag2(X, tree_33(Y, underscore3, Right)) -> if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_in_ga2(Y, X))
less_2_in_ga2(0_0, s_11(underscore4)) -> less_2_out_ga2(0_0, s_11(underscore4))
less_2_in_ga2(s_11(X), s_11(Y)) -> if_less_2_in_1_ga3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_ga3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_ga2(s_11(X), s_11(Y))
if_in_2_in_3_ag5(X, Y, underscore3, Right, less_2_out_ga2(Y, X)) -> if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_in_gg2(X, Right))
if_in_2_in_4_ag5(X, Y, underscore3, Right, in_2_out_gg2(X, Right)) -> in_2_out_ag2(X, tree_33(Y, underscore3, Right))

The argument filtering Pi contains the following mapping:
in_2_in_ag2(x1, x2)  =  in_2_in_ag1(x2)
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
in_2_out_ag2(x1, x2)  =  in_2_out_ag2(x1, x2)
if_in_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_ag4(x2, x3, x4, x5)
less_2_in_ag2(x1, x2)  =  less_2_in_ag1(x2)
less_2_out_ag2(x1, x2)  =  less_2_out_ag2(x1, x2)
if_less_2_in_1_ag3(x1, x2, x3)  =  if_less_2_in_1_ag1(x3)
if_in_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_ag5(x1, x2, x3, x4, x5)
in_2_in_gg2(x1, x2)  =  in_2_in_gg2(x1, x2)
in_2_out_gg2(x1, x2)  =  in_2_out_gg2(x1, x2)
if_in_2_in_1_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_1_gg5(x1, x2, x3, x4, x5)
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg2(x1, x2)
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
if_in_2_in_2_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_2_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_gg5(x1, x2, x3, x4, x5)
if_in_2_in_4_gg5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_gg5(x1, x2, x3, x4, x5)
if_in_2_in_3_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_3_ag4(x2, x3, x4, x5)
less_2_in_ga2(x1, x2)  =  less_2_in_ga1(x1)
less_2_out_ga2(x1, x2)  =  less_2_out_ga2(x1, x2)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
if_less_2_in_1_ga3(x1, x2, x3)  =  if_less_2_in_1_ga1(x3)
if_in_2_in_4_ag5(x1, x2, x3, x4, x5)  =  if_in_2_in_4_ag5(x1, x2, x3, x4, x5)
IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)
IN_2_IN_GG2(x1, x2)  =  IN_2_IN_GG2(x1, x2)
IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IN_2_IN_GG2(X, Left)
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IN_2_IN_GG2(X, Right)
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))

The TRS R consists of the following rules:

less_2_in_gg2(0_0, s_11(underscore4)) -> less_2_out_gg2(0_0, s_11(underscore4))
less_2_in_gg2(s_11(X), s_11(Y)) -> if_less_2_in_1_gg3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_gg3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_11(X), s_11(Y))
less_2_in_aa2(0_0, s_11(underscore4)) -> less_2_out_aa2(0_0, s_11(underscore4))
less_2_in_aa2(s_11(X), s_11(Y)) -> if_less_2_in_1_aa3(X, Y, less_2_in_aa2(X, Y))
if_less_2_in_1_aa3(X, Y, less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
0_0  =  0_0
s_11(x1)  =  s_1
less_2_in_gg2(x1, x2)  =  less_2_in_gg2(x1, x2)
less_2_out_gg2(x1, x2)  =  less_2_out_gg2(x1, x2)
if_less_2_in_1_gg3(x1, x2, x3)  =  if_less_2_in_1_gg1(x3)
less_2_in_aa2(x1, x2)  =  less_2_in_aa
less_2_out_aa2(x1, x2)  =  less_2_out_aa2(x1, x2)
if_less_2_in_1_aa3(x1, x2, x3)  =  if_less_2_in_1_aa1(x3)
IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_3_GG5(x1, x2, x3, x4, x5)
IN_2_IN_GG2(x1, x2)  =  IN_2_IN_GG2(x1, x2)
IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)  =  IF_IN_2_IN_1_GG5(x1, x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

IN_2_IN_GG2(X, tree_33(Y, underscore3, Right)) -> IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_in_gg2(Y, X))
IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_out_gg2(X, Y)) -> IN_2_IN_GG2(X, Left)
IF_IN_2_IN_3_GG5(X, Y, underscore3, Right, less_2_out_gg2(Y, X)) -> IN_2_IN_GG2(X, Right)
IN_2_IN_GG2(X, tree_33(Y, Left, underscore2)) -> IF_IN_2_IN_1_GG5(X, Y, Left, underscore2, less_2_in_gg2(X, Y))

The TRS R consists of the following rules:

less_2_in_gg2(0_0, s_1) -> less_2_out_gg2(0_0, s_1)
less_2_in_gg2(s_1, s_1) -> if_less_2_in_1_gg1(less_2_in_aa)
if_less_2_in_1_gg1(less_2_out_aa2(X, Y)) -> less_2_out_gg2(s_1, s_1)
less_2_in_aa -> less_2_out_aa2(0_0, s_1)
less_2_in_aa -> if_less_2_in_1_aa1(less_2_in_aa)
if_less_2_in_1_aa1(less_2_out_aa2(X, Y)) -> less_2_out_aa2(s_1, s_1)

The set Q consists of the following terms:

less_2_in_gg2(x0, x1)
if_less_2_in_1_gg1(x0)
less_2_in_aa
if_less_2_in_1_aa1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_IN_2_IN_3_GG5, IN_2_IN_GG2, IF_IN_2_IN_1_GG5}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: