Left Termination of the query pattern g(f) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

g1(W) :- eq2(X, .2(.2(a0, {}0), .2(.2(R, {}0), {}0))), eq2(Y, .2(.2(S, .2(c0, {}0)), .2({}0, {}0))), app13(X, Y, Z), eq2(Z, .2(U, V)), app23(U, U, W).
app13({}0, X, X).
app13(.2(X, Xs), Ys, .2(X, Zs)) :- app13(Xs, Ys, Zs).
app23({}0, X, X).
app23(.2(X, Xs), Ys, .2(X, Zs)) :- app23(Xs, Ys, Zs).
eq2(X, X).


With regard to the inferred argument filtering the predicates were used in the following modes:
g1: (f)
app_13: (f,b,f)
app_23: (f,f,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag1(x1)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga2(x1, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga1(x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga1(x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag1(x1)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga2(x1, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga1(x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga1(x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a


Pi DP problem:
The TRS P consists of the following rules:

G_1_IN_A1(W) -> IF_G_1_IN_1_A2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
G_1_IN_A1(W) -> EQ_2_IN_AG2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))
IF_G_1_IN_1_A2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> IF_G_1_IN_2_A3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
IF_G_1_IN_1_A2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> EQ_2_IN_AG2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))
IF_G_1_IN_2_A3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> IF_G_1_IN_3_A4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
IF_G_1_IN_2_A3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> APP_1_3_IN_AGA3(X, Y, Z)
APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_1_3_IN_1_AGA5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_1_3_IN_AGA3(Xs, Ys, Zs)
IF_G_1_IN_3_A4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> IF_G_1_IN_4_A3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
IF_G_1_IN_3_A4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> EQ_2_IN_GA2(Z, ._22(U, V))
IF_G_1_IN_4_A3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> IF_G_1_IN_5_A3(W, U, app_2_3_in_aaa3(U, U, W))
IF_G_1_IN_4_A3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> APP_2_3_IN_AAA3(U, U, W)
APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_2_3_IN_1_AAA5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_2_3_IN_AAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag1(x1)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga2(x1, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga1(x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga1(x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a
IF_G_1_IN_1_A2(x1, x2)  =  IF_G_1_IN_1_A1(x2)
IF_G_1_IN_4_A3(x1, x2, x3)  =  IF_G_1_IN_4_A1(x3)
G_1_IN_A1(x1)  =  G_1_IN_A
EQ_2_IN_AG2(x1, x2)  =  EQ_2_IN_AG1(x2)
APP_2_3_IN_AAA3(x1, x2, x3)  =  APP_2_3_IN_AAA
IF_APP_1_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_APP_1_3_IN_1_AGA1(x5)
IF_G_1_IN_3_A4(x1, x2, x3, x4)  =  IF_G_1_IN_3_A1(x4)
IF_G_1_IN_2_A3(x1, x2, x3)  =  IF_G_1_IN_2_A1(x3)
IF_G_1_IN_5_A3(x1, x2, x3)  =  IF_G_1_IN_5_A1(x3)
IF_APP_2_3_IN_1_AAA5(x1, x2, x3, x4, x5)  =  IF_APP_2_3_IN_1_AAA1(x5)
APP_1_3_IN_AGA3(x1, x2, x3)  =  APP_1_3_IN_AGA1(x2)
EQ_2_IN_GA2(x1, x2)  =  EQ_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

G_1_IN_A1(W) -> IF_G_1_IN_1_A2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
G_1_IN_A1(W) -> EQ_2_IN_AG2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))
IF_G_1_IN_1_A2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> IF_G_1_IN_2_A3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
IF_G_1_IN_1_A2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> EQ_2_IN_AG2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))
IF_G_1_IN_2_A3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> IF_G_1_IN_3_A4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
IF_G_1_IN_2_A3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> APP_1_3_IN_AGA3(X, Y, Z)
APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_1_3_IN_1_AGA5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_1_3_IN_AGA3(Xs, Ys, Zs)
IF_G_1_IN_3_A4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> IF_G_1_IN_4_A3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
IF_G_1_IN_3_A4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> EQ_2_IN_GA2(Z, ._22(U, V))
IF_G_1_IN_4_A3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> IF_G_1_IN_5_A3(W, U, app_2_3_in_aaa3(U, U, W))
IF_G_1_IN_4_A3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> APP_2_3_IN_AAA3(U, U, W)
APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_2_3_IN_1_AAA5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_2_3_IN_AAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag1(x1)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga2(x1, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga1(x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga1(x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a
IF_G_1_IN_1_A2(x1, x2)  =  IF_G_1_IN_1_A1(x2)
IF_G_1_IN_4_A3(x1, x2, x3)  =  IF_G_1_IN_4_A1(x3)
G_1_IN_A1(x1)  =  G_1_IN_A
EQ_2_IN_AG2(x1, x2)  =  EQ_2_IN_AG1(x2)
APP_2_3_IN_AAA3(x1, x2, x3)  =  APP_2_3_IN_AAA
IF_APP_1_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_APP_1_3_IN_1_AGA1(x5)
IF_G_1_IN_3_A4(x1, x2, x3, x4)  =  IF_G_1_IN_3_A1(x4)
IF_G_1_IN_2_A3(x1, x2, x3)  =  IF_G_1_IN_2_A1(x3)
IF_G_1_IN_5_A3(x1, x2, x3)  =  IF_G_1_IN_5_A1(x3)
IF_APP_2_3_IN_1_AAA5(x1, x2, x3, x4, x5)  =  IF_APP_2_3_IN_1_AAA1(x5)
APP_1_3_IN_AGA3(x1, x2, x3)  =  APP_1_3_IN_AGA1(x2)
EQ_2_IN_GA2(x1, x2)  =  EQ_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 12 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_2_3_IN_AAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag1(x1)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga2(x1, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga1(x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga1(x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a
APP_2_3_IN_AAA3(x1, x2, x3)  =  APP_2_3_IN_AAA

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_2_3_IN_AAA3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_2_3_IN_AAA3(x1, x2, x3)  =  APP_2_3_IN_AAA

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

APP_2_3_IN_AAA -> APP_2_3_IN_AAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APP_2_3_IN_AAA}.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_1_3_IN_AGA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag1(x1)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga2(x1, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga1(x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga1(x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a
APP_1_3_IN_AGA3(x1, x2, x3)  =  APP_1_3_IN_AGA1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_1_3_IN_AGA3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_1_3_IN_AGA3(x1, x2, x3)  =  APP_1_3_IN_AGA1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

APP_1_3_IN_AGA1(Ys) -> APP_1_3_IN_AGA1(Ys)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APP_1_3_IN_AGA1}.
With regard to the inferred argument filtering the predicates were used in the following modes:
g1: (f)
app_13: (f,b,f)
app_23: (f,f,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag2(x1, x2)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga3(x1, x2, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga2(x3, x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga2(x1, x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag2(x1, x2)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga3(x1, x2, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga2(x3, x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga2(x1, x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a


Pi DP problem:
The TRS P consists of the following rules:

G_1_IN_A1(W) -> IF_G_1_IN_1_A2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
G_1_IN_A1(W) -> EQ_2_IN_AG2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))
IF_G_1_IN_1_A2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> IF_G_1_IN_2_A3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
IF_G_1_IN_1_A2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> EQ_2_IN_AG2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))
IF_G_1_IN_2_A3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> IF_G_1_IN_3_A4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
IF_G_1_IN_2_A3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> APP_1_3_IN_AGA3(X, Y, Z)
APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_1_3_IN_1_AGA5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_1_3_IN_AGA3(Xs, Ys, Zs)
IF_G_1_IN_3_A4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> IF_G_1_IN_4_A3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
IF_G_1_IN_3_A4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> EQ_2_IN_GA2(Z, ._22(U, V))
IF_G_1_IN_4_A3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> IF_G_1_IN_5_A3(W, U, app_2_3_in_aaa3(U, U, W))
IF_G_1_IN_4_A3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> APP_2_3_IN_AAA3(U, U, W)
APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_2_3_IN_1_AAA5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_2_3_IN_AAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag2(x1, x2)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga3(x1, x2, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga2(x3, x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga2(x1, x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a
IF_G_1_IN_1_A2(x1, x2)  =  IF_G_1_IN_1_A1(x2)
IF_G_1_IN_4_A3(x1, x2, x3)  =  IF_G_1_IN_4_A1(x3)
G_1_IN_A1(x1)  =  G_1_IN_A
EQ_2_IN_AG2(x1, x2)  =  EQ_2_IN_AG1(x2)
APP_2_3_IN_AAA3(x1, x2, x3)  =  APP_2_3_IN_AAA
IF_APP_1_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_APP_1_3_IN_1_AGA2(x3, x5)
IF_G_1_IN_3_A4(x1, x2, x3, x4)  =  IF_G_1_IN_3_A1(x4)
IF_G_1_IN_2_A3(x1, x2, x3)  =  IF_G_1_IN_2_A1(x3)
IF_G_1_IN_5_A3(x1, x2, x3)  =  IF_G_1_IN_5_A1(x3)
IF_APP_2_3_IN_1_AAA5(x1, x2, x3, x4, x5)  =  IF_APP_2_3_IN_1_AAA1(x5)
APP_1_3_IN_AGA3(x1, x2, x3)  =  APP_1_3_IN_AGA1(x2)
EQ_2_IN_GA2(x1, x2)  =  EQ_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

G_1_IN_A1(W) -> IF_G_1_IN_1_A2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
G_1_IN_A1(W) -> EQ_2_IN_AG2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))
IF_G_1_IN_1_A2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> IF_G_1_IN_2_A3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
IF_G_1_IN_1_A2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> EQ_2_IN_AG2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))
IF_G_1_IN_2_A3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> IF_G_1_IN_3_A4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
IF_G_1_IN_2_A3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> APP_1_3_IN_AGA3(X, Y, Z)
APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_1_3_IN_1_AGA5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_1_3_IN_AGA3(Xs, Ys, Zs)
IF_G_1_IN_3_A4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> IF_G_1_IN_4_A3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
IF_G_1_IN_3_A4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> EQ_2_IN_GA2(Z, ._22(U, V))
IF_G_1_IN_4_A3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> IF_G_1_IN_5_A3(W, U, app_2_3_in_aaa3(U, U, W))
IF_G_1_IN_4_A3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> APP_2_3_IN_AAA3(U, U, W)
APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_2_3_IN_1_AAA5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_2_3_IN_AAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag2(x1, x2)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga3(x1, x2, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga2(x3, x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga2(x1, x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a
IF_G_1_IN_1_A2(x1, x2)  =  IF_G_1_IN_1_A1(x2)
IF_G_1_IN_4_A3(x1, x2, x3)  =  IF_G_1_IN_4_A1(x3)
G_1_IN_A1(x1)  =  G_1_IN_A
EQ_2_IN_AG2(x1, x2)  =  EQ_2_IN_AG1(x2)
APP_2_3_IN_AAA3(x1, x2, x3)  =  APP_2_3_IN_AAA
IF_APP_1_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_APP_1_3_IN_1_AGA2(x3, x5)
IF_G_1_IN_3_A4(x1, x2, x3, x4)  =  IF_G_1_IN_3_A1(x4)
IF_G_1_IN_2_A3(x1, x2, x3)  =  IF_G_1_IN_2_A1(x3)
IF_G_1_IN_5_A3(x1, x2, x3)  =  IF_G_1_IN_5_A1(x3)
IF_APP_2_3_IN_1_AAA5(x1, x2, x3, x4, x5)  =  IF_APP_2_3_IN_1_AAA1(x5)
APP_1_3_IN_AGA3(x1, x2, x3)  =  APP_1_3_IN_AGA1(x2)
EQ_2_IN_GA2(x1, x2)  =  EQ_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 12 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_2_3_IN_AAA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag2(x1, x2)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga3(x1, x2, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga2(x3, x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga2(x1, x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a
APP_2_3_IN_AAA3(x1, x2, x3)  =  APP_2_3_IN_AAA

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APP_2_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_2_3_IN_AAA3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_2_3_IN_AAA3(x1, x2, x3)  =  APP_2_3_IN_AAA

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APP_2_3_IN_AAA -> APP_2_3_IN_AAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APP_2_3_IN_AAA}.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_1_3_IN_AGA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

g_1_in_a1(W) -> if_g_1_in_1_a2(W, eq_2_in_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0))))
eq_2_in_ag2(X, X) -> eq_2_out_ag2(X, X)
if_g_1_in_1_a2(W, eq_2_out_ag2(X, ._22(._22(a_0, []_0), ._22(._22(R, []_0), []_0)))) -> if_g_1_in_2_a3(W, X, eq_2_in_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0))))
if_g_1_in_2_a3(W, X, eq_2_out_ag2(Y, ._22(._22(S, ._22(c_0, []_0)), ._22([]_0, []_0)))) -> if_g_1_in_3_a4(W, X, Y, app_1_3_in_aga3(X, Y, Z))
app_1_3_in_aga3([]_0, X, X) -> app_1_3_out_aga3([]_0, X, X)
app_1_3_in_aga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_in_aga3(Xs, Ys, Zs))
if_app_1_3_in_1_aga5(X, Xs, Ys, Zs, app_1_3_out_aga3(Xs, Ys, Zs)) -> app_1_3_out_aga3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_3_a4(W, X, Y, app_1_3_out_aga3(X, Y, Z)) -> if_g_1_in_4_a3(W, Z, eq_2_in_ga2(Z, ._22(U, V)))
eq_2_in_ga2(X, X) -> eq_2_out_ga2(X, X)
if_g_1_in_4_a3(W, Z, eq_2_out_ga2(Z, ._22(U, V))) -> if_g_1_in_5_a3(W, U, app_2_3_in_aaa3(U, U, W))
app_2_3_in_aaa3([]_0, X, X) -> app_2_3_out_aaa3([]_0, X, X)
app_2_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_in_aaa3(Xs, Ys, Zs))
if_app_2_3_in_1_aaa5(X, Xs, Ys, Zs, app_2_3_out_aaa3(Xs, Ys, Zs)) -> app_2_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_g_1_in_5_a3(W, U, app_2_3_out_aaa3(U, U, W)) -> g_1_out_a1(W)

The argument filtering Pi contains the following mapping:
g_1_in_a1(x1)  =  g_1_in_a
._22(x1, x2)  =  ._21(x2)
a_0  =  a_0
[]_0  =  []_0
c_0  =  c_0
if_g_1_in_1_a2(x1, x2)  =  if_g_1_in_1_a1(x2)
if_g_1_in_2_a3(x1, x2, x3)  =  if_g_1_in_2_a1(x3)
if_g_1_in_3_a4(x1, x2, x3, x4)  =  if_g_1_in_3_a1(x4)
eq_2_in_ag2(x1, x2)  =  eq_2_in_ag1(x2)
eq_2_out_ag2(x1, x2)  =  eq_2_out_ag2(x1, x2)
app_1_3_in_aga3(x1, x2, x3)  =  app_1_3_in_aga1(x2)
app_1_3_out_aga3(x1, x2, x3)  =  app_1_3_out_aga3(x1, x2, x3)
if_app_1_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_app_1_3_in_1_aga2(x3, x5)
if_g_1_in_4_a3(x1, x2, x3)  =  if_g_1_in_4_a1(x3)
eq_2_in_ga2(x1, x2)  =  eq_2_in_ga1(x1)
eq_2_out_ga2(x1, x2)  =  eq_2_out_ga2(x1, x2)
if_g_1_in_5_a3(x1, x2, x3)  =  if_g_1_in_5_a1(x3)
app_2_3_in_aaa3(x1, x2, x3)  =  app_2_3_in_aaa
app_2_3_out_aaa3(x1, x2, x3)  =  app_2_3_out_aaa1(x1)
if_app_2_3_in_1_aaa5(x1, x2, x3, x4, x5)  =  if_app_2_3_in_1_aaa1(x5)
g_1_out_a1(x1)  =  g_1_out_a
APP_1_3_IN_AGA3(x1, x2, x3)  =  APP_1_3_IN_AGA1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

APP_1_3_IN_AGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_1_3_IN_AGA3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._21(x2)
APP_1_3_IN_AGA3(x1, x2, x3)  =  APP_1_3_IN_AGA1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP

Q DP problem:
The TRS P consists of the following rules:

APP_1_3_IN_AGA1(Ys) -> APP_1_3_IN_AGA1(Ys)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APP_1_3_IN_AGA1}.