↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
fl3: (f,f,b)
append3: (f,f,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAA3(E, Y, R)
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAA5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAA3(Xs, Ys, Zs)
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> IF_FL_3_IN_2_AAG6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> FL_3_IN_AAG3(X, Y, Z)
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAA3(E, Y, R)
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAA5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAA3(Xs, Ys, Zs)
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> IF_FL_3_IN_2_AAG6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> FL_3_IN_AAG3(X, Y, Z)
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAA3(Xs, Ys, Zs)
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAA3(Xs, Ys, Zs)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ PiDP
↳ PrologToPiTRSProof
APPEND_3_IN_AAA -> APPEND_3_IN_AAA
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> FL_3_IN_AAG3(X, Y, Z)
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> FL_3_IN_AAG3(X, Y, Z)
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PrologToPiTRSProof
IF_FL_3_IN_1_AAG2(Z, append_3_out_aaa1(E)) -> FL_3_IN_AAG1(Z)
FL_3_IN_AAG1(s_11(Z)) -> IF_FL_3_IN_1_AAG2(Z, append_3_in_aaa)
append_3_in_aaa -> append_3_out_aaa1([]_0)
append_3_in_aaa -> if_append_3_in_1_aaa1(append_3_in_aaa)
if_append_3_in_1_aaa1(append_3_out_aaa1(Xs)) -> append_3_out_aaa1(._21(Xs))
append_3_in_aaa
if_append_3_in_1_aaa1(x0)
From the DPs we obtained the following set of size-change graphs:
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAA3(E, Y, R)
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAA5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAA3(Xs, Ys, Zs)
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> IF_FL_3_IN_2_AAG6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> FL_3_IN_AAG3(X, Y, Z)
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAA3(E, Y, R)
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAA5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAA3(Xs, Ys, Zs)
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> IF_FL_3_IN_2_AAG6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> FL_3_IN_AAG3(X, Y, Z)
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAA3(Xs, Ys, Zs)
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APPEND_3_IN_AAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAA3(Xs, Ys, Zs)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ PiDP
APPEND_3_IN_AAA -> APPEND_3_IN_AAA
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> FL_3_IN_AAG3(X, Y, Z)
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
fl_3_in_aag3([]_0, []_0, 0_0) -> fl_3_out_aag3([]_0, []_0, 0_0)
fl_3_in_aag3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aag5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aag5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_in_aag3(X, Y, Z))
if_fl_3_in_2_aag6(E, X, R, Z, Y, fl_3_out_aag3(X, Y, Z)) -> fl_3_out_aag3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_out_aaa3(E, Y, R)) -> FL_3_IN_AAG3(X, Y, Z)
FL_3_IN_AAG3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AAG5(E, X, R, Z, append_3_in_aaa3(E, Y, R))
append_3_in_aaa3([]_0, X, X) -> append_3_out_aaa3([]_0, X, X)
append_3_in_aaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_in_aaa3(Xs, Ys, Zs))
if_append_3_in_1_aaa5(X, Xs, Ys, Zs, append_3_out_aaa3(Xs, Ys, Zs)) -> append_3_out_aaa3(._22(X, Xs), Ys, ._22(X, Zs))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
IF_FL_3_IN_1_AAG2(Z, append_3_out_aaa1(E)) -> FL_3_IN_AAG1(Z)
FL_3_IN_AAG1(s_11(Z)) -> IF_FL_3_IN_1_AAG2(Z, append_3_in_aaa)
append_3_in_aaa -> append_3_out_aaa1([]_0)
append_3_in_aaa -> if_append_3_in_1_aaa1(append_3_in_aaa)
if_append_3_in_1_aaa1(append_3_out_aaa1(Xs)) -> append_3_out_aaa1(._21(Xs))
append_3_in_aaa
if_append_3_in_1_aaa1(x0)
From the DPs we obtained the following set of size-change graphs: