↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
fl3: (f,b,f)
append3: (f,f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAG3(E, Y, R)
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAG5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> IF_FL_3_IN_2_AGA6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAG3(E, Y, R)
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAG5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> IF_FL_3_IN_2_AGA6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PrologToPiTRSProof
APPEND_3_IN_AAG1(._22(X, Zs)) -> APPEND_3_IN_AAG1(Zs)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
IF_FL_3_IN_1_AGA1(append_3_out_aag2(E, Y)) -> FL_3_IN_AGA1(Y)
FL_3_IN_AGA1(R) -> IF_FL_3_IN_1_AGA1(append_3_in_aag1(R))
append_3_in_aag1(X) -> append_3_out_aag2([]_0, X)
append_3_in_aag1(._22(X, Zs)) -> if_append_3_in_1_aag2(X, append_3_in_aag1(Zs))
if_append_3_in_1_aag2(X, append_3_out_aag2(Xs, Ys)) -> append_3_out_aag2(._22(X, Xs), Ys)
append_3_in_aag1(x0)
if_append_3_in_1_aag2(x0, x1)
append_3_in_aag1(._22(X, Zs)) -> if_append_3_in_1_aag2(X, append_3_in_aag1(Zs))
POL(FL_3_IN_AGA1(x1)) = 1 + 2·x1
POL(append_3_in_aag1(x1)) = 1 + 2·x1
POL(._22(x1, x2)) = 1 + x1 + x2
POL(append_3_out_aag2(x1, x2)) = 1 + x1 + 2·x2
POL(if_append_3_in_1_aag2(x1, x2)) = 1 + x1 + x2
POL(IF_FL_3_IN_1_AGA1(x1)) = x1
POL([]_0) = 0
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
IF_FL_3_IN_1_AGA1(append_3_out_aag2(E, Y)) -> FL_3_IN_AGA1(Y)
FL_3_IN_AGA1(R) -> IF_FL_3_IN_1_AGA1(append_3_in_aag1(R))
append_3_in_aag1(X) -> append_3_out_aag2([]_0, X)
if_append_3_in_1_aag2(X, append_3_out_aag2(Xs, Ys)) -> append_3_out_aag2(._22(X, Xs), Ys)
append_3_in_aag1(x0)
if_append_3_in_1_aag2(x0, x1)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ PrologToPiTRSProof
IF_FL_3_IN_1_AGA1(append_3_out_aag2(E, Y)) -> FL_3_IN_AGA1(Y)
FL_3_IN_AGA1(R) -> IF_FL_3_IN_1_AGA1(append_3_in_aag1(R))
append_3_in_aag1(X) -> append_3_out_aag2([]_0, X)
append_3_in_aag1(x0)
if_append_3_in_1_aag2(x0, x1)
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAG3(E, Y, R)
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAG5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> IF_FL_3_IN_2_AGA6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAG3(E, Y, R)
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAG5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> IF_FL_3_IN_2_AGA6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
APPEND_3_IN_AAG1(._22(X, Zs)) -> APPEND_3_IN_AAG1(Zs)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
IF_FL_3_IN_1_AGA2(R, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA1(Y)
FL_3_IN_AGA1(R) -> IF_FL_3_IN_1_AGA2(R, append_3_in_aag1(R))
append_3_in_aag1(X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag1(._22(X, Zs)) -> if_append_3_in_1_aag3(X, Zs, append_3_in_aag1(Zs))
if_append_3_in_1_aag3(X, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
append_3_in_aag1(x0)
if_append_3_in_1_aag3(x0, x1, x2)