Left Termination of the query pattern fl(f,b,f) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

fl3({}0, {}0, 00).
fl3(.2(E, X), R, s1(Z)) :- append3(E, Y, R), fl3(X, Y, Z).
append3({}0, X, X).
append3(.2(X, Xs), Ys, .2(X, Zs)) :- append3(Xs, Ys, Zs).


With regard to the inferred argument filtering the predicates were used in the following modes:
fl3: (f,b,f)
append3: (f,f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga2(x1, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga1(x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag2(x1, x2)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag2(x1, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga2(x1, x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga2(x1, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga1(x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag2(x1, x2)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag2(x1, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga2(x1, x6)


Pi DP problem:
The TRS P consists of the following rules:

FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAG3(E, Y, R)
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAG5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> IF_FL_3_IN_2_AGA6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)

The TRS R consists of the following rules:

fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga2(x1, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga1(x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag2(x1, x2)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag2(x1, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga2(x1, x6)
IF_APPEND_3_IN_1_AAG5(x1, x2, x3, x4, x5)  =  IF_APPEND_3_IN_1_AAG2(x1, x5)
FL_3_IN_AGA3(x1, x2, x3)  =  FL_3_IN_AGA1(x2)
APPEND_3_IN_AAG3(x1, x2, x3)  =  APPEND_3_IN_AAG1(x3)
IF_FL_3_IN_2_AGA6(x1, x2, x3, x4, x5, x6)  =  IF_FL_3_IN_2_AGA2(x1, x6)
IF_FL_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_AGA1(x5)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAG3(E, Y, R)
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAG5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> IF_FL_3_IN_2_AGA6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)

The TRS R consists of the following rules:

fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga2(x1, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga1(x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag2(x1, x2)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag2(x1, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga2(x1, x6)
IF_APPEND_3_IN_1_AAG5(x1, x2, x3, x4, x5)  =  IF_APPEND_3_IN_1_AAG2(x1, x5)
FL_3_IN_AGA3(x1, x2, x3)  =  FL_3_IN_AGA1(x2)
APPEND_3_IN_AAG3(x1, x2, x3)  =  APPEND_3_IN_AAG1(x3)
IF_FL_3_IN_2_AGA6(x1, x2, x3, x4, x5, x6)  =  IF_FL_3_IN_2_AGA2(x1, x6)
IF_FL_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_AGA1(x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)

The TRS R consists of the following rules:

fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga2(x1, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga1(x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag2(x1, x2)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag2(x1, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga2(x1, x6)
APPEND_3_IN_AAG3(x1, x2, x3)  =  APPEND_3_IN_AAG1(x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
APPEND_3_IN_AAG3(x1, x2, x3)  =  APPEND_3_IN_AAG1(x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_AAG1(._22(X, Zs)) -> APPEND_3_IN_AAG1(Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APPEND_3_IN_AAG1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))

The TRS R consists of the following rules:

fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga2(x1, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga1(x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag2(x1, x2)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag2(x1, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga2(x1, x6)
FL_3_IN_AGA3(x1, x2, x3)  =  FL_3_IN_AGA1(x2)
IF_FL_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_AGA1(x5)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))

The TRS R consists of the following rules:

append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))

The argument filtering Pi contains the following mapping:
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag2(x1, x2)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag2(x1, x5)
FL_3_IN_AGA3(x1, x2, x3)  =  FL_3_IN_AGA1(x2)
IF_FL_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_AGA1(x5)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ RuleRemovalProof
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

IF_FL_3_IN_1_AGA1(append_3_out_aag2(E, Y)) -> FL_3_IN_AGA1(Y)
FL_3_IN_AGA1(R) -> IF_FL_3_IN_1_AGA1(append_3_in_aag1(R))

The TRS R consists of the following rules:

append_3_in_aag1(X) -> append_3_out_aag2([]_0, X)
append_3_in_aag1(._22(X, Zs)) -> if_append_3_in_1_aag2(X, append_3_in_aag1(Zs))
if_append_3_in_1_aag2(X, append_3_out_aag2(Xs, Ys)) -> append_3_out_aag2(._22(X, Xs), Ys)

The set Q consists of the following terms:

append_3_in_aag1(x0)
if_append_3_in_1_aag2(x0, x1)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {FL_3_IN_AGA1, IF_FL_3_IN_1_AGA1}.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

append_3_in_aag1(._22(X, Zs)) -> if_append_3_in_1_aag2(X, append_3_in_aag1(Zs))

Used ordering: POLO with Polynomial interpretation:

POL(FL_3_IN_AGA1(x1)) = 1 + 2·x1   
POL(append_3_in_aag1(x1)) = 1 + 2·x1   
POL(._22(x1, x2)) = 1 + x1 + x2   
POL(append_3_out_aag2(x1, x2)) = 1 + x1 + 2·x2   
POL(if_append_3_in_1_aag2(x1, x2)) = 1 + x1 + x2   
POL(IF_FL_3_IN_1_AGA1(x1)) = x1   
POL([]_0) = 0   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

IF_FL_3_IN_1_AGA1(append_3_out_aag2(E, Y)) -> FL_3_IN_AGA1(Y)
FL_3_IN_AGA1(R) -> IF_FL_3_IN_1_AGA1(append_3_in_aag1(R))

The TRS R consists of the following rules:

append_3_in_aag1(X) -> append_3_out_aag2([]_0, X)
if_append_3_in_1_aag2(X, append_3_out_aag2(Xs, Ys)) -> append_3_out_aag2(._22(X, Xs), Ys)

The set Q consists of the following terms:

append_3_in_aag1(x0)
if_append_3_in_1_aag2(x0, x1)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {FL_3_IN_AGA1, IF_FL_3_IN_1_AGA1}.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

IF_FL_3_IN_1_AGA1(append_3_out_aag2(E, Y)) -> FL_3_IN_AGA1(Y)
FL_3_IN_AGA1(R) -> IF_FL_3_IN_1_AGA1(append_3_in_aag1(R))

The TRS R consists of the following rules:

append_3_in_aag1(X) -> append_3_out_aag2([]_0, X)

The set Q consists of the following terms:

append_3_in_aag1(x0)
if_append_3_in_1_aag2(x0, x1)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {FL_3_IN_AGA1, IF_FL_3_IN_1_AGA1}.
With regard to the inferred argument filtering the predicates were used in the following modes:
fl3: (f,b,f)
append3: (f,f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga3(x1, x2, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga2(x3, x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag3(x1, x2, x3)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag3(x1, x4, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga3(x1, x3, x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga3(x1, x2, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga2(x3, x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag3(x1, x2, x3)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag3(x1, x4, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga3(x1, x3, x6)


Pi DP problem:
The TRS P consists of the following rules:

FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAG3(E, Y, R)
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAG5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> IF_FL_3_IN_2_AGA6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)

The TRS R consists of the following rules:

fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga3(x1, x2, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga2(x3, x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag3(x1, x2, x3)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag3(x1, x4, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga3(x1, x3, x6)
IF_APPEND_3_IN_1_AAG5(x1, x2, x3, x4, x5)  =  IF_APPEND_3_IN_1_AAG3(x1, x4, x5)
FL_3_IN_AGA3(x1, x2, x3)  =  FL_3_IN_AGA1(x2)
APPEND_3_IN_AAG3(x1, x2, x3)  =  APPEND_3_IN_AAG1(x3)
IF_FL_3_IN_2_AGA6(x1, x2, x3, x4, x5, x6)  =  IF_FL_3_IN_2_AGA3(x1, x3, x6)
IF_FL_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_AGA2(x3, x5)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_AAG3(E, Y, R)
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_AAG5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> IF_FL_3_IN_2_AGA6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)

The TRS R consists of the following rules:

fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga3(x1, x2, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga2(x3, x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag3(x1, x2, x3)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag3(x1, x4, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga3(x1, x3, x6)
IF_APPEND_3_IN_1_AAG5(x1, x2, x3, x4, x5)  =  IF_APPEND_3_IN_1_AAG3(x1, x4, x5)
FL_3_IN_AGA3(x1, x2, x3)  =  FL_3_IN_AGA1(x2)
APPEND_3_IN_AAG3(x1, x2, x3)  =  APPEND_3_IN_AAG1(x3)
IF_FL_3_IN_2_AGA6(x1, x2, x3, x4, x5, x6)  =  IF_FL_3_IN_2_AGA3(x1, x3, x6)
IF_FL_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_AGA2(x3, x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)

The TRS R consists of the following rules:

fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga3(x1, x2, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga2(x3, x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag3(x1, x2, x3)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag3(x1, x4, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga3(x1, x3, x6)
APPEND_3_IN_AAG3(x1, x2, x3)  =  APPEND_3_IN_AAG1(x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_AAG3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
APPEND_3_IN_AAG3(x1, x2, x3)  =  APPEND_3_IN_AAG1(x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_AAG1(._22(X, Zs)) -> APPEND_3_IN_AAG1(Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APPEND_3_IN_AAG1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))

The TRS R consists of the following rules:

fl_3_in_aga3([]_0, []_0, 0_0) -> fl_3_out_aga3([]_0, []_0, 0_0)
fl_3_in_aga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_aga5(E, X, R, Z, append_3_in_aag3(E, Y, R))
append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_aga5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_in_aga3(X, Y, Z))
if_fl_3_in_2_aga6(E, X, R, Z, Y, fl_3_out_aga3(X, Y, Z)) -> fl_3_out_aga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_aga3(x1, x2, x3)  =  fl_3_in_aga1(x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_aga3(x1, x2, x3)  =  fl_3_out_aga3(x1, x2, x3)
if_fl_3_in_1_aga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_aga2(x3, x5)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag3(x1, x2, x3)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag3(x1, x4, x5)
if_fl_3_in_2_aga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_aga3(x1, x3, x6)
FL_3_IN_AGA3(x1, x2, x3)  =  FL_3_IN_AGA1(x2)
IF_FL_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_AGA2(x3, x5)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA3(X, Y, Z)
FL_3_IN_AGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_AGA5(E, X, R, Z, append_3_in_aag3(E, Y, R))

The TRS R consists of the following rules:

append_3_in_aag3([]_0, X, X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_in_aag3(Xs, Ys, Zs))
if_append_3_in_1_aag5(X, Xs, Ys, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))

The argument filtering Pi contains the following mapping:
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
append_3_in_aag3(x1, x2, x3)  =  append_3_in_aag1(x3)
append_3_out_aag3(x1, x2, x3)  =  append_3_out_aag3(x1, x2, x3)
if_append_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_aag3(x1, x4, x5)
FL_3_IN_AGA3(x1, x2, x3)  =  FL_3_IN_AGA1(x2)
IF_FL_3_IN_1_AGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_AGA2(x3, x5)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP

Q DP problem:
The TRS P consists of the following rules:

IF_FL_3_IN_1_AGA2(R, append_3_out_aag3(E, Y, R)) -> FL_3_IN_AGA1(Y)
FL_3_IN_AGA1(R) -> IF_FL_3_IN_1_AGA2(R, append_3_in_aag1(R))

The TRS R consists of the following rules:

append_3_in_aag1(X) -> append_3_out_aag3([]_0, X, X)
append_3_in_aag1(._22(X, Zs)) -> if_append_3_in_1_aag3(X, Zs, append_3_in_aag1(Zs))
if_append_3_in_1_aag3(X, Zs, append_3_out_aag3(Xs, Ys, Zs)) -> append_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))

The set Q consists of the following terms:

append_3_in_aag1(x0)
if_append_3_in_1_aag3(x0, x1, x2)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {FL_3_IN_AGA1, IF_FL_3_IN_1_AGA2}.