↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
fl3: (b,f,f)
append3: (b,f,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
fl_3_in_gaa3([]_0, []_0, 0_0) -> fl_3_out_gaa3([]_0, []_0, 0_0)
fl_3_in_gaa3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gaa5(E, X, R, Z, append_3_in_gaa3(E, Y, R))
append_3_in_gaa3([]_0, X, X) -> append_3_out_gaa3([]_0, X, X)
append_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_in_gaa3(Xs, Ys, Zs))
if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_out_gaa3(Xs, Ys, Zs)) -> append_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gaa5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_in_gaa3(X, Y, Z))
if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_out_gaa3(X, Y, Z)) -> fl_3_out_gaa3(._22(E, X), R, s_11(Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
fl_3_in_gaa3([]_0, []_0, 0_0) -> fl_3_out_gaa3([]_0, []_0, 0_0)
fl_3_in_gaa3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gaa5(E, X, R, Z, append_3_in_gaa3(E, Y, R))
append_3_in_gaa3([]_0, X, X) -> append_3_out_gaa3([]_0, X, X)
append_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_in_gaa3(Xs, Ys, Zs))
if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_out_gaa3(Xs, Ys, Zs)) -> append_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gaa5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_in_gaa3(X, Y, Z))
if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_out_gaa3(X, Y, Z)) -> fl_3_out_gaa3(._22(E, X), R, s_11(Z))
FL_3_IN_GAA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GAA5(E, X, R, Z, append_3_in_gaa3(E, Y, R))
FL_3_IN_GAA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_GAA3(E, Y, R)
APPEND_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_GAA5(X, Xs, Ys, Zs, append_3_in_gaa3(Xs, Ys, Zs))
APPEND_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAA3(Xs, Ys, Zs)
IF_FL_3_IN_1_GAA5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> IF_FL_3_IN_2_GAA6(E, X, R, Z, Y, fl_3_in_gaa3(X, Y, Z))
IF_FL_3_IN_1_GAA5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> FL_3_IN_GAA3(X, Y, Z)
fl_3_in_gaa3([]_0, []_0, 0_0) -> fl_3_out_gaa3([]_0, []_0, 0_0)
fl_3_in_gaa3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gaa5(E, X, R, Z, append_3_in_gaa3(E, Y, R))
append_3_in_gaa3([]_0, X, X) -> append_3_out_gaa3([]_0, X, X)
append_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_in_gaa3(Xs, Ys, Zs))
if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_out_gaa3(Xs, Ys, Zs)) -> append_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gaa5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_in_gaa3(X, Y, Z))
if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_out_gaa3(X, Y, Z)) -> fl_3_out_gaa3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
FL_3_IN_GAA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GAA5(E, X, R, Z, append_3_in_gaa3(E, Y, R))
FL_3_IN_GAA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_GAA3(E, Y, R)
APPEND_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_GAA5(X, Xs, Ys, Zs, append_3_in_gaa3(Xs, Ys, Zs))
APPEND_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAA3(Xs, Ys, Zs)
IF_FL_3_IN_1_GAA5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> IF_FL_3_IN_2_GAA6(E, X, R, Z, Y, fl_3_in_gaa3(X, Y, Z))
IF_FL_3_IN_1_GAA5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> FL_3_IN_GAA3(X, Y, Z)
fl_3_in_gaa3([]_0, []_0, 0_0) -> fl_3_out_gaa3([]_0, []_0, 0_0)
fl_3_in_gaa3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gaa5(E, X, R, Z, append_3_in_gaa3(E, Y, R))
append_3_in_gaa3([]_0, X, X) -> append_3_out_gaa3([]_0, X, X)
append_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_in_gaa3(Xs, Ys, Zs))
if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_out_gaa3(Xs, Ys, Zs)) -> append_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gaa5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_in_gaa3(X, Y, Z))
if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_out_gaa3(X, Y, Z)) -> fl_3_out_gaa3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APPEND_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAA3(Xs, Ys, Zs)
fl_3_in_gaa3([]_0, []_0, 0_0) -> fl_3_out_gaa3([]_0, []_0, 0_0)
fl_3_in_gaa3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gaa5(E, X, R, Z, append_3_in_gaa3(E, Y, R))
append_3_in_gaa3([]_0, X, X) -> append_3_out_gaa3([]_0, X, X)
append_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_in_gaa3(Xs, Ys, Zs))
if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_out_gaa3(Xs, Ys, Zs)) -> append_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gaa5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_in_gaa3(X, Y, Z))
if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_out_gaa3(X, Y, Z)) -> fl_3_out_gaa3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APPEND_3_IN_GAA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAA3(Xs, Ys, Zs)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
APPEND_3_IN_GAA1(._22(X, Xs)) -> APPEND_3_IN_GAA1(Xs)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
FL_3_IN_GAA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GAA5(E, X, R, Z, append_3_in_gaa3(E, Y, R))
IF_FL_3_IN_1_GAA5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> FL_3_IN_GAA3(X, Y, Z)
fl_3_in_gaa3([]_0, []_0, 0_0) -> fl_3_out_gaa3([]_0, []_0, 0_0)
fl_3_in_gaa3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gaa5(E, X, R, Z, append_3_in_gaa3(E, Y, R))
append_3_in_gaa3([]_0, X, X) -> append_3_out_gaa3([]_0, X, X)
append_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_in_gaa3(Xs, Ys, Zs))
if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_out_gaa3(Xs, Ys, Zs)) -> append_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gaa5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_in_gaa3(X, Y, Z))
if_fl_3_in_2_gaa6(E, X, R, Z, Y, fl_3_out_gaa3(X, Y, Z)) -> fl_3_out_gaa3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
FL_3_IN_GAA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GAA5(E, X, R, Z, append_3_in_gaa3(E, Y, R))
IF_FL_3_IN_1_GAA5(E, X, R, Z, append_3_out_gaa3(E, Y, R)) -> FL_3_IN_GAA3(X, Y, Z)
append_3_in_gaa3([]_0, X, X) -> append_3_out_gaa3([]_0, X, X)
append_3_in_gaa3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_in_gaa3(Xs, Ys, Zs))
if_append_3_in_1_gaa5(X, Xs, Ys, Zs, append_3_out_gaa3(Xs, Ys, Zs)) -> append_3_out_gaa3(._22(X, Xs), Ys, ._22(X, Zs))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
FL_3_IN_GAA1(._22(E, X)) -> IF_FL_3_IN_1_GAA2(X, append_3_in_gaa1(E))
IF_FL_3_IN_1_GAA2(X, append_3_out_gaa) -> FL_3_IN_GAA1(X)
append_3_in_gaa1([]_0) -> append_3_out_gaa
append_3_in_gaa1(._22(X, Xs)) -> if_append_3_in_1_gaa1(append_3_in_gaa1(Xs))
if_append_3_in_1_gaa1(append_3_out_gaa) -> append_3_out_gaa
append_3_in_gaa1(x0)
if_append_3_in_1_gaa1(x0)
From the DPs we obtained the following set of size-change graphs: