↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
fl3: (b,b,f)
append3: (b,f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))
FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_in_gag3(E, Y, R))
FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_GAG3(E, Y, R)
APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_GAG5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> IF_FL_3_IN_2_GGA6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> FL_3_IN_GGA3(X, Y, Z)
fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_in_gag3(E, Y, R))
FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_GAG3(E, Y, R)
APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_GAG5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> IF_FL_3_IN_2_GGA6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> FL_3_IN_GGA3(X, Y, Z)
fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAG3(Xs, Ys, Zs)
fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAG3(Xs, Ys, Zs)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
APPEND_3_IN_GAG2(._22(X, Xs), ._22(X, Zs)) -> APPEND_3_IN_GAG2(Xs, Zs)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_in_gag3(E, Y, R))
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> FL_3_IN_GGA3(X, Y, Z)
fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_in_gag3(E, Y, R))
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> FL_3_IN_GGA3(X, Y, Z)
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
FL_3_IN_GGA2(._22(E, X), R) -> IF_FL_3_IN_1_GGA2(X, append_3_in_gag2(E, R))
IF_FL_3_IN_1_GGA2(X, append_3_out_gag1(Y)) -> FL_3_IN_GGA2(X, Y)
append_3_in_gag2([]_0, X) -> append_3_out_gag1(X)
append_3_in_gag2(._22(X, Xs), ._22(X, Zs)) -> if_append_3_in_1_gag1(append_3_in_gag2(Xs, Zs))
if_append_3_in_1_gag1(append_3_out_gag1(Ys)) -> append_3_out_gag1(Ys)
append_3_in_gag2(x0, x1)
if_append_3_in_1_gag1(x0)
From the DPs we obtained the following set of size-change graphs: