Left Termination of the query pattern fl(b,b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

fl3({}0, {}0, 00).
fl3(.2(E, X), R, s1(Z)) :- append3(E, Y, R), fl3(X, Y, Z).
append3({}0, X, X).
append3(.2(X, Xs), Ys, .2(X, Zs)) :- append3(Xs, Ys, Zs).


With regard to the inferred argument filtering the predicates were used in the following modes:
fl3: (b,b,f)
append3: (b,f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_gga3(x1, x2, x3)  =  fl_3_in_gga2(x1, x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_gga3(x1, x2, x3)  =  fl_3_out_gga1(x3)
if_fl_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_gga2(x2, x5)
append_3_in_gag3(x1, x2, x3)  =  append_3_in_gag2(x1, x3)
append_3_out_gag3(x1, x2, x3)  =  append_3_out_gag1(x2)
if_append_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gag1(x5)
if_fl_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_gga1(x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_gga3(x1, x2, x3)  =  fl_3_in_gga2(x1, x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_gga3(x1, x2, x3)  =  fl_3_out_gga1(x3)
if_fl_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_gga2(x2, x5)
append_3_in_gag3(x1, x2, x3)  =  append_3_in_gag2(x1, x3)
append_3_out_gag3(x1, x2, x3)  =  append_3_out_gag1(x2)
if_append_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gag1(x5)
if_fl_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_gga1(x6)


Pi DP problem:
The TRS P consists of the following rules:

FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_in_gag3(E, Y, R))
FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_GAG3(E, Y, R)
APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_GAG5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> IF_FL_3_IN_2_GGA6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> FL_3_IN_GGA3(X, Y, Z)

The TRS R consists of the following rules:

fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_gga3(x1, x2, x3)  =  fl_3_in_gga2(x1, x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_gga3(x1, x2, x3)  =  fl_3_out_gga1(x3)
if_fl_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_gga2(x2, x5)
append_3_in_gag3(x1, x2, x3)  =  append_3_in_gag2(x1, x3)
append_3_out_gag3(x1, x2, x3)  =  append_3_out_gag1(x2)
if_append_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gag1(x5)
if_fl_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_gga1(x6)
IF_APPEND_3_IN_1_GAG5(x1, x2, x3, x4, x5)  =  IF_APPEND_3_IN_1_GAG1(x5)
APPEND_3_IN_GAG3(x1, x2, x3)  =  APPEND_3_IN_GAG2(x1, x3)
IF_FL_3_IN_2_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_FL_3_IN_2_GGA1(x6)
IF_FL_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_GGA2(x2, x5)
FL_3_IN_GGA3(x1, x2, x3)  =  FL_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_in_gag3(E, Y, R))
FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> APPEND_3_IN_GAG3(E, Y, R)
APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_GAG5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAG3(Xs, Ys, Zs)
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> IF_FL_3_IN_2_GGA6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> FL_3_IN_GGA3(X, Y, Z)

The TRS R consists of the following rules:

fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_gga3(x1, x2, x3)  =  fl_3_in_gga2(x1, x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_gga3(x1, x2, x3)  =  fl_3_out_gga1(x3)
if_fl_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_gga2(x2, x5)
append_3_in_gag3(x1, x2, x3)  =  append_3_in_gag2(x1, x3)
append_3_out_gag3(x1, x2, x3)  =  append_3_out_gag1(x2)
if_append_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gag1(x5)
if_fl_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_gga1(x6)
IF_APPEND_3_IN_1_GAG5(x1, x2, x3, x4, x5)  =  IF_APPEND_3_IN_1_GAG1(x5)
APPEND_3_IN_GAG3(x1, x2, x3)  =  APPEND_3_IN_GAG2(x1, x3)
IF_FL_3_IN_2_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_FL_3_IN_2_GGA1(x6)
IF_FL_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_GGA2(x2, x5)
FL_3_IN_GGA3(x1, x2, x3)  =  FL_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAG3(Xs, Ys, Zs)

The TRS R consists of the following rules:

fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_gga3(x1, x2, x3)  =  fl_3_in_gga2(x1, x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_gga3(x1, x2, x3)  =  fl_3_out_gga1(x3)
if_fl_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_gga2(x2, x5)
append_3_in_gag3(x1, x2, x3)  =  append_3_in_gag2(x1, x3)
append_3_out_gag3(x1, x2, x3)  =  append_3_out_gag1(x2)
if_append_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gag1(x5)
if_fl_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_gga1(x6)
APPEND_3_IN_GAG3(x1, x2, x3)  =  APPEND_3_IN_GAG2(x1, x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_GAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GAG3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
APPEND_3_IN_GAG3(x1, x2, x3)  =  APPEND_3_IN_GAG2(x1, x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_GAG2(._22(X, Xs), ._22(X, Zs)) -> APPEND_3_IN_GAG2(Xs, Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APPEND_3_IN_GAG2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_in_gag3(E, Y, R))
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> FL_3_IN_GGA3(X, Y, Z)

The TRS R consists of the following rules:

fl_3_in_gga3([]_0, []_0, 0_0) -> fl_3_out_gga3([]_0, []_0, 0_0)
fl_3_in_gga3(._22(E, X), R, s_11(Z)) -> if_fl_3_in_1_gga5(E, X, R, Z, append_3_in_gag3(E, Y, R))
append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))
if_fl_3_in_1_gga5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_in_gga3(X, Y, Z))
if_fl_3_in_2_gga6(E, X, R, Z, Y, fl_3_out_gga3(X, Y, Z)) -> fl_3_out_gga3(._22(E, X), R, s_11(Z))

The argument filtering Pi contains the following mapping:
fl_3_in_gga3(x1, x2, x3)  =  fl_3_in_gga2(x1, x2)
[]_0  =  []_0
0_0  =  0_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
fl_3_out_gga3(x1, x2, x3)  =  fl_3_out_gga1(x3)
if_fl_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_fl_3_in_1_gga2(x2, x5)
append_3_in_gag3(x1, x2, x3)  =  append_3_in_gag2(x1, x3)
append_3_out_gag3(x1, x2, x3)  =  append_3_out_gag1(x2)
if_append_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gag1(x5)
if_fl_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_fl_3_in_2_gga1(x6)
IF_FL_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_GGA2(x2, x5)
FL_3_IN_GGA3(x1, x2, x3)  =  FL_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

FL_3_IN_GGA3(._22(E, X), R, s_11(Z)) -> IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_in_gag3(E, Y, R))
IF_FL_3_IN_1_GGA5(E, X, R, Z, append_3_out_gag3(E, Y, R)) -> FL_3_IN_GGA3(X, Y, Z)

The TRS R consists of the following rules:

append_3_in_gag3([]_0, X, X) -> append_3_out_gag3([]_0, X, X)
append_3_in_gag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_in_gag3(Xs, Ys, Zs))
if_append_3_in_1_gag5(X, Xs, Ys, Zs, append_3_out_gag3(Xs, Ys, Zs)) -> append_3_out_gag3(._22(X, Xs), Ys, ._22(X, Zs))

The argument filtering Pi contains the following mapping:
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
append_3_in_gag3(x1, x2, x3)  =  append_3_in_gag2(x1, x3)
append_3_out_gag3(x1, x2, x3)  =  append_3_out_gag1(x2)
if_append_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gag1(x5)
IF_FL_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_FL_3_IN_1_GGA2(x2, x5)
FL_3_IN_GGA3(x1, x2, x3)  =  FL_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

FL_3_IN_GGA2(._22(E, X), R) -> IF_FL_3_IN_1_GGA2(X, append_3_in_gag2(E, R))
IF_FL_3_IN_1_GGA2(X, append_3_out_gag1(Y)) -> FL_3_IN_GGA2(X, Y)

The TRS R consists of the following rules:

append_3_in_gag2([]_0, X) -> append_3_out_gag1(X)
append_3_in_gag2(._22(X, Xs), ._22(X, Zs)) -> if_append_3_in_1_gag1(append_3_in_gag2(Xs, Zs))
if_append_3_in_1_gag1(append_3_out_gag1(Ys)) -> append_3_out_gag1(Ys)

The set Q consists of the following terms:

append_3_in_gag2(x0, x1)
if_append_3_in_1_gag1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_FL_3_IN_1_GGA2, FL_3_IN_GGA2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: