Left Termination of the query pattern delmin(f,f,b) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ UnrequestedClauseRemoverProof

delete3(X, tree3(X, void0, Right), Right).
delete3(X, tree3(X, Left, void0), Left).
delete3(X, tree3(X, Left, Right), tree3(Y, Left, Right1)) :- delmin3(Right, Y, Right1).
delete3(X, tree3(Y, Left, Right), tree3(Y, Left1, Right)) :- less2(X, Y), delete3(X, Left, Left1).
delete3(X, tree3(Y, Left, Right), tree3(Y, Left, Right1)) :- less2(Y, X), delete3(X, Right, Right1).
delmin3(tree3(Y, void0, Right), Y, Right).
delmin3(tree3(X, Left, underscore), Y, tree3(X, Left1, underscore1)) :- delmin3(Left, Y, Left1).
less2(00, s1(underscore2)).
less2(s1(X), s1(Y)) :- less2(X, Y).


The clauses

delete3(X, tree3(X, void0, Right), Right).
delete3(X, tree3(X, Left, void0), Left).
delete3(X, tree3(X, Left, Right), tree3(Y, Left, Right1)) :- delmin3(Right, Y, Right1).
delete3(X, tree3(Y, Left, Right), tree3(Y, Left1, Right)) :- less2(X, Y), delete3(X, Left, Left1).
delete3(X, tree3(Y, Left, Right), tree3(Y, Left, Right1)) :- less2(Y, X), delete3(X, Right, Right1).
less2(00, s1(underscore2)).
less2(s1(X), s1(Y)) :- less2(X, Y).

can be ignored, as they are not needed by any of the given querys.

Deleting these clauses results in the following prolog program:

delmin3(tree3(Y, void0, Right), Y, Right).
delmin3(tree3(X, Left, underscore), Y, tree3(X, Left1, underscore1)) :- delmin3(Left, Y, Left1).



↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
PROLOG
      ↳ PrologToPiTRSProof

delmin3(tree3(Y, void0, Right), Y, Right).
delmin3(tree3(X, Left, underscore), Y, tree3(X, Left1, underscore1)) :- delmin3(Left, Y, Left1).


With regard to the inferred argument filtering the predicates were used in the following modes:
delmin3: (f,f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


delmin_3_in_aag3(tree_33(Y, void_0, Right), Y, Right) -> delmin_3_out_aag3(tree_33(Y, void_0, Right), Y, Right)
delmin_3_in_aag3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1)) -> if_delmin_3_in_1_aag7(X, Left, underscore, Y, Left1, underscore1, delmin_3_in_aag3(Left, Y, Left1))
if_delmin_3_in_1_aag7(X, Left, underscore, Y, Left1, underscore1, delmin_3_out_aag3(Left, Y, Left1)) -> delmin_3_out_aag3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1))

The argument filtering Pi contains the following mapping:
delmin_3_in_aag3(x1, x2, x3)  =  delmin_3_in_aag1(x3)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
delmin_3_out_aag3(x1, x2, x3)  =  delmin_3_out_aag1(x1)
if_delmin_3_in_1_aag7(x1, x2, x3, x4, x5, x6, x7)  =  if_delmin_3_in_1_aag1(x7)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
PiTRS
          ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

delmin_3_in_aag3(tree_33(Y, void_0, Right), Y, Right) -> delmin_3_out_aag3(tree_33(Y, void_0, Right), Y, Right)
delmin_3_in_aag3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1)) -> if_delmin_3_in_1_aag7(X, Left, underscore, Y, Left1, underscore1, delmin_3_in_aag3(Left, Y, Left1))
if_delmin_3_in_1_aag7(X, Left, underscore, Y, Left1, underscore1, delmin_3_out_aag3(Left, Y, Left1)) -> delmin_3_out_aag3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1))

The argument filtering Pi contains the following mapping:
delmin_3_in_aag3(x1, x2, x3)  =  delmin_3_in_aag1(x3)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
delmin_3_out_aag3(x1, x2, x3)  =  delmin_3_out_aag1(x1)
if_delmin_3_in_1_aag7(x1, x2, x3, x4, x5, x6, x7)  =  if_delmin_3_in_1_aag1(x7)


Pi DP problem:
The TRS P consists of the following rules:

DELMIN_3_IN_AAG3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1)) -> IF_DELMIN_3_IN_1_AAG7(X, Left, underscore, Y, Left1, underscore1, delmin_3_in_aag3(Left, Y, Left1))
DELMIN_3_IN_AAG3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1)) -> DELMIN_3_IN_AAG3(Left, Y, Left1)

The TRS R consists of the following rules:

delmin_3_in_aag3(tree_33(Y, void_0, Right), Y, Right) -> delmin_3_out_aag3(tree_33(Y, void_0, Right), Y, Right)
delmin_3_in_aag3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1)) -> if_delmin_3_in_1_aag7(X, Left, underscore, Y, Left1, underscore1, delmin_3_in_aag3(Left, Y, Left1))
if_delmin_3_in_1_aag7(X, Left, underscore, Y, Left1, underscore1, delmin_3_out_aag3(Left, Y, Left1)) -> delmin_3_out_aag3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1))

The argument filtering Pi contains the following mapping:
delmin_3_in_aag3(x1, x2, x3)  =  delmin_3_in_aag1(x3)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
delmin_3_out_aag3(x1, x2, x3)  =  delmin_3_out_aag1(x1)
if_delmin_3_in_1_aag7(x1, x2, x3, x4, x5, x6, x7)  =  if_delmin_3_in_1_aag1(x7)
DELMIN_3_IN_AAG3(x1, x2, x3)  =  DELMIN_3_IN_AAG1(x3)
IF_DELMIN_3_IN_1_AAG7(x1, x2, x3, x4, x5, x6, x7)  =  IF_DELMIN_3_IN_1_AAG1(x7)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
PiDP
              ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

DELMIN_3_IN_AAG3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1)) -> IF_DELMIN_3_IN_1_AAG7(X, Left, underscore, Y, Left1, underscore1, delmin_3_in_aag3(Left, Y, Left1))
DELMIN_3_IN_AAG3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1)) -> DELMIN_3_IN_AAG3(Left, Y, Left1)

The TRS R consists of the following rules:

delmin_3_in_aag3(tree_33(Y, void_0, Right), Y, Right) -> delmin_3_out_aag3(tree_33(Y, void_0, Right), Y, Right)
delmin_3_in_aag3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1)) -> if_delmin_3_in_1_aag7(X, Left, underscore, Y, Left1, underscore1, delmin_3_in_aag3(Left, Y, Left1))
if_delmin_3_in_1_aag7(X, Left, underscore, Y, Left1, underscore1, delmin_3_out_aag3(Left, Y, Left1)) -> delmin_3_out_aag3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1))

The argument filtering Pi contains the following mapping:
delmin_3_in_aag3(x1, x2, x3)  =  delmin_3_in_aag1(x3)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
delmin_3_out_aag3(x1, x2, x3)  =  delmin_3_out_aag1(x1)
if_delmin_3_in_1_aag7(x1, x2, x3, x4, x5, x6, x7)  =  if_delmin_3_in_1_aag1(x7)
DELMIN_3_IN_AAG3(x1, x2, x3)  =  DELMIN_3_IN_AAG1(x3)
IF_DELMIN_3_IN_1_AAG7(x1, x2, x3, x4, x5, x6, x7)  =  IF_DELMIN_3_IN_1_AAG1(x7)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 1 less node.

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
PiDP
                  ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

DELMIN_3_IN_AAG3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1)) -> DELMIN_3_IN_AAG3(Left, Y, Left1)

The TRS R consists of the following rules:

delmin_3_in_aag3(tree_33(Y, void_0, Right), Y, Right) -> delmin_3_out_aag3(tree_33(Y, void_0, Right), Y, Right)
delmin_3_in_aag3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1)) -> if_delmin_3_in_1_aag7(X, Left, underscore, Y, Left1, underscore1, delmin_3_in_aag3(Left, Y, Left1))
if_delmin_3_in_1_aag7(X, Left, underscore, Y, Left1, underscore1, delmin_3_out_aag3(Left, Y, Left1)) -> delmin_3_out_aag3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1))

The argument filtering Pi contains the following mapping:
delmin_3_in_aag3(x1, x2, x3)  =  delmin_3_in_aag1(x3)
tree_33(x1, x2, x3)  =  tree_31(x2)
void_0  =  void_0
delmin_3_out_aag3(x1, x2, x3)  =  delmin_3_out_aag1(x1)
if_delmin_3_in_1_aag7(x1, x2, x3, x4, x5, x6, x7)  =  if_delmin_3_in_1_aag1(x7)
DELMIN_3_IN_AAG3(x1, x2, x3)  =  DELMIN_3_IN_AAG1(x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
                ↳ PiDP
                  ↳ UsableRulesProof
PiDP
                      ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

DELMIN_3_IN_AAG3(tree_33(X, Left, underscore), Y, tree_33(X, Left1, underscore1)) -> DELMIN_3_IN_AAG3(Left, Y, Left1)

R is empty.
The argument filtering Pi contains the following mapping:
tree_33(x1, x2, x3)  =  tree_31(x2)
DELMIN_3_IN_AAG3(x1, x2, x3)  =  DELMIN_3_IN_AAG1(x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
                ↳ PiDP
                  ↳ UsableRulesProof
                    ↳ PiDP
                      ↳ PiDPToQDPProof
QDP
                          ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

DELMIN_3_IN_AAG1(tree_31(Left1)) -> DELMIN_3_IN_AAG1(Left1)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {DELMIN_3_IN_AAG1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: