↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
subset2: (b,b)
member2: (b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
subset_2_in_gg2(._22(X, Xs), Ys) -> if_subset_2_in_1_gg4(X, Xs, Ys, member_2_in_gg2(X, Ys))
member_2_in_gg2(X, ._22(Y, Xs)) -> if_member_2_in_1_gg4(X, Y, Xs, member_2_in_gg2(X, Xs))
member_2_in_gg2(X, ._22(X, Xs)) -> member_2_out_gg2(X, ._22(X, Xs))
if_member_2_in_1_gg4(X, Y, Xs, member_2_out_gg2(X, Xs)) -> member_2_out_gg2(X, ._22(Y, Xs))
if_subset_2_in_1_gg4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_in_gg2(Xs, Ys))
subset_2_in_gg2([]_0, Ys) -> subset_2_out_gg2([]_0, Ys)
if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_out_gg2(Xs, Ys)) -> subset_2_out_gg2(._22(X, Xs), Ys)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
subset_2_in_gg2(._22(X, Xs), Ys) -> if_subset_2_in_1_gg4(X, Xs, Ys, member_2_in_gg2(X, Ys))
member_2_in_gg2(X, ._22(Y, Xs)) -> if_member_2_in_1_gg4(X, Y, Xs, member_2_in_gg2(X, Xs))
member_2_in_gg2(X, ._22(X, Xs)) -> member_2_out_gg2(X, ._22(X, Xs))
if_member_2_in_1_gg4(X, Y, Xs, member_2_out_gg2(X, Xs)) -> member_2_out_gg2(X, ._22(Y, Xs))
if_subset_2_in_1_gg4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_in_gg2(Xs, Ys))
subset_2_in_gg2([]_0, Ys) -> subset_2_out_gg2([]_0, Ys)
if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_out_gg2(Xs, Ys)) -> subset_2_out_gg2(._22(X, Xs), Ys)
SUBSET_2_IN_GG2(._22(X, Xs), Ys) -> IF_SUBSET_2_IN_1_GG4(X, Xs, Ys, member_2_in_gg2(X, Ys))
SUBSET_2_IN_GG2(._22(X, Xs), Ys) -> MEMBER_2_IN_GG2(X, Ys)
MEMBER_2_IN_GG2(X, ._22(Y, Xs)) -> IF_MEMBER_2_IN_1_GG4(X, Y, Xs, member_2_in_gg2(X, Xs))
MEMBER_2_IN_GG2(X, ._22(Y, Xs)) -> MEMBER_2_IN_GG2(X, Xs)
IF_SUBSET_2_IN_1_GG4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> IF_SUBSET_2_IN_2_GG4(X, Xs, Ys, subset_2_in_gg2(Xs, Ys))
IF_SUBSET_2_IN_1_GG4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> SUBSET_2_IN_GG2(Xs, Ys)
subset_2_in_gg2(._22(X, Xs), Ys) -> if_subset_2_in_1_gg4(X, Xs, Ys, member_2_in_gg2(X, Ys))
member_2_in_gg2(X, ._22(Y, Xs)) -> if_member_2_in_1_gg4(X, Y, Xs, member_2_in_gg2(X, Xs))
member_2_in_gg2(X, ._22(X, Xs)) -> member_2_out_gg2(X, ._22(X, Xs))
if_member_2_in_1_gg4(X, Y, Xs, member_2_out_gg2(X, Xs)) -> member_2_out_gg2(X, ._22(Y, Xs))
if_subset_2_in_1_gg4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_in_gg2(Xs, Ys))
subset_2_in_gg2([]_0, Ys) -> subset_2_out_gg2([]_0, Ys)
if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_out_gg2(Xs, Ys)) -> subset_2_out_gg2(._22(X, Xs), Ys)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
SUBSET_2_IN_GG2(._22(X, Xs), Ys) -> IF_SUBSET_2_IN_1_GG4(X, Xs, Ys, member_2_in_gg2(X, Ys))
SUBSET_2_IN_GG2(._22(X, Xs), Ys) -> MEMBER_2_IN_GG2(X, Ys)
MEMBER_2_IN_GG2(X, ._22(Y, Xs)) -> IF_MEMBER_2_IN_1_GG4(X, Y, Xs, member_2_in_gg2(X, Xs))
MEMBER_2_IN_GG2(X, ._22(Y, Xs)) -> MEMBER_2_IN_GG2(X, Xs)
IF_SUBSET_2_IN_1_GG4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> IF_SUBSET_2_IN_2_GG4(X, Xs, Ys, subset_2_in_gg2(Xs, Ys))
IF_SUBSET_2_IN_1_GG4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> SUBSET_2_IN_GG2(Xs, Ys)
subset_2_in_gg2(._22(X, Xs), Ys) -> if_subset_2_in_1_gg4(X, Xs, Ys, member_2_in_gg2(X, Ys))
member_2_in_gg2(X, ._22(Y, Xs)) -> if_member_2_in_1_gg4(X, Y, Xs, member_2_in_gg2(X, Xs))
member_2_in_gg2(X, ._22(X, Xs)) -> member_2_out_gg2(X, ._22(X, Xs))
if_member_2_in_1_gg4(X, Y, Xs, member_2_out_gg2(X, Xs)) -> member_2_out_gg2(X, ._22(Y, Xs))
if_subset_2_in_1_gg4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_in_gg2(Xs, Ys))
subset_2_in_gg2([]_0, Ys) -> subset_2_out_gg2([]_0, Ys)
if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_out_gg2(Xs, Ys)) -> subset_2_out_gg2(._22(X, Xs), Ys)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
MEMBER_2_IN_GG2(X, ._22(Y, Xs)) -> MEMBER_2_IN_GG2(X, Xs)
subset_2_in_gg2(._22(X, Xs), Ys) -> if_subset_2_in_1_gg4(X, Xs, Ys, member_2_in_gg2(X, Ys))
member_2_in_gg2(X, ._22(Y, Xs)) -> if_member_2_in_1_gg4(X, Y, Xs, member_2_in_gg2(X, Xs))
member_2_in_gg2(X, ._22(X, Xs)) -> member_2_out_gg2(X, ._22(X, Xs))
if_member_2_in_1_gg4(X, Y, Xs, member_2_out_gg2(X, Xs)) -> member_2_out_gg2(X, ._22(Y, Xs))
if_subset_2_in_1_gg4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_in_gg2(Xs, Ys))
subset_2_in_gg2([]_0, Ys) -> subset_2_out_gg2([]_0, Ys)
if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_out_gg2(Xs, Ys)) -> subset_2_out_gg2(._22(X, Xs), Ys)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
MEMBER_2_IN_GG2(X, ._22(Y, Xs)) -> MEMBER_2_IN_GG2(X, Xs)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
MEMBER_2_IN_GG2(X, ._22(Y, Xs)) -> MEMBER_2_IN_GG2(X, Xs)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_SUBSET_2_IN_1_GG4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> SUBSET_2_IN_GG2(Xs, Ys)
SUBSET_2_IN_GG2(._22(X, Xs), Ys) -> IF_SUBSET_2_IN_1_GG4(X, Xs, Ys, member_2_in_gg2(X, Ys))
subset_2_in_gg2(._22(X, Xs), Ys) -> if_subset_2_in_1_gg4(X, Xs, Ys, member_2_in_gg2(X, Ys))
member_2_in_gg2(X, ._22(Y, Xs)) -> if_member_2_in_1_gg4(X, Y, Xs, member_2_in_gg2(X, Xs))
member_2_in_gg2(X, ._22(X, Xs)) -> member_2_out_gg2(X, ._22(X, Xs))
if_member_2_in_1_gg4(X, Y, Xs, member_2_out_gg2(X, Xs)) -> member_2_out_gg2(X, ._22(Y, Xs))
if_subset_2_in_1_gg4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_in_gg2(Xs, Ys))
subset_2_in_gg2([]_0, Ys) -> subset_2_out_gg2([]_0, Ys)
if_subset_2_in_2_gg4(X, Xs, Ys, subset_2_out_gg2(Xs, Ys)) -> subset_2_out_gg2(._22(X, Xs), Ys)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_SUBSET_2_IN_1_GG4(X, Xs, Ys, member_2_out_gg2(X, Ys)) -> SUBSET_2_IN_GG2(Xs, Ys)
SUBSET_2_IN_GG2(._22(X, Xs), Ys) -> IF_SUBSET_2_IN_1_GG4(X, Xs, Ys, member_2_in_gg2(X, Ys))
member_2_in_gg2(X, ._22(Y, Xs)) -> if_member_2_in_1_gg4(X, Y, Xs, member_2_in_gg2(X, Xs))
member_2_in_gg2(X, ._22(X, Xs)) -> member_2_out_gg2(X, ._22(X, Xs))
if_member_2_in_1_gg4(X, Y, Xs, member_2_out_gg2(X, Xs)) -> member_2_out_gg2(X, ._22(Y, Xs))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
IF_SUBSET_2_IN_1_GG3(Xs, Ys, member_2_out_gg) -> SUBSET_2_IN_GG2(Xs, Ys)
SUBSET_2_IN_GG2(._22(X, Xs), Ys) -> IF_SUBSET_2_IN_1_GG3(Xs, Ys, member_2_in_gg2(X, Ys))
member_2_in_gg2(X, ._22(Y, Xs)) -> if_member_2_in_1_gg1(member_2_in_gg2(X, Xs))
member_2_in_gg2(X, ._22(X, Xs)) -> member_2_out_gg
if_member_2_in_1_gg1(member_2_out_gg) -> member_2_out_gg
member_2_in_gg2(x0, x1)
if_member_2_in_1_gg1(x0)
From the DPs we obtained the following set of size-change graphs: