Left Termination of the query pattern inorder(b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

inorder2(nil0, {}0).
inorder2(tree3(L, V, R), I) :- inorder2(L, LI), inorder2(R, RI), append3(LI, .2(V, RI), I).
append3({}0, X, X).
append3(.2(X, Xs), Ys, .2(X, Zs)) :- append3(Xs, Ys, Zs).


With regard to the inferred argument filtering the predicates were used in the following modes:
inorder2: (b,f)
append3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)

The argument filtering Pi contains the following mapping:
inorder_2_in_ga2(x1, x2)  =  inorder_2_in_ga1(x1)
nil_0  =  nil_0
[]_0  =  []_0
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
._22(x1, x2)  =  ._22(x1, x2)
inorder_2_out_ga2(x1, x2)  =  inorder_2_out_ga1(x2)
if_inorder_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_inorder_2_in_1_ga3(x2, x3, x5)
if_inorder_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_inorder_2_in_2_ga3(x2, x5, x6)
if_inorder_2_in_3_ga7(x1, x2, x3, x4, x5, x6, x7)  =  if_inorder_2_in_3_ga1(x7)
append_3_in_gga3(x1, x2, x3)  =  append_3_in_gga2(x1, x2)
append_3_out_gga3(x1, x2, x3)  =  append_3_out_gga1(x3)
if_append_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gga2(x1, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)

The argument filtering Pi contains the following mapping:
inorder_2_in_ga2(x1, x2)  =  inorder_2_in_ga1(x1)
nil_0  =  nil_0
[]_0  =  []_0
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
._22(x1, x2)  =  ._22(x1, x2)
inorder_2_out_ga2(x1, x2)  =  inorder_2_out_ga1(x2)
if_inorder_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_inorder_2_in_1_ga3(x2, x3, x5)
if_inorder_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_inorder_2_in_2_ga3(x2, x5, x6)
if_inorder_2_in_3_ga7(x1, x2, x3, x4, x5, x6, x7)  =  if_inorder_2_in_3_ga1(x7)
append_3_in_gga3(x1, x2, x3)  =  append_3_in_gga2(x1, x2)
append_3_out_gga3(x1, x2, x3)  =  append_3_out_gga1(x3)
if_append_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gga2(x1, x5)


Pi DP problem:
The TRS P consists of the following rules:

INORDER_2_IN_GA2(tree_33(L, V, R), I) -> IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_in_ga2(L, LI))
INORDER_2_IN_GA2(tree_33(L, V, R), I) -> INORDER_2_IN_GA2(L, LI)
IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> INORDER_2_IN_GA2(R, RI)
IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> IF_INORDER_2_IN_3_GA7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> APPEND_3_IN_GGA3(LI, ._22(V, RI), I)
APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_GGA5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GGA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)

The argument filtering Pi contains the following mapping:
inorder_2_in_ga2(x1, x2)  =  inorder_2_in_ga1(x1)
nil_0  =  nil_0
[]_0  =  []_0
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
._22(x1, x2)  =  ._22(x1, x2)
inorder_2_out_ga2(x1, x2)  =  inorder_2_out_ga1(x2)
if_inorder_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_inorder_2_in_1_ga3(x2, x3, x5)
if_inorder_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_inorder_2_in_2_ga3(x2, x5, x6)
if_inorder_2_in_3_ga7(x1, x2, x3, x4, x5, x6, x7)  =  if_inorder_2_in_3_ga1(x7)
append_3_in_gga3(x1, x2, x3)  =  append_3_in_gga2(x1, x2)
append_3_out_gga3(x1, x2, x3)  =  append_3_out_gga1(x3)
if_append_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gga2(x1, x5)
INORDER_2_IN_GA2(x1, x2)  =  INORDER_2_IN_GA1(x1)
IF_APPEND_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_APPEND_3_IN_1_GGA2(x1, x5)
IF_INORDER_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_INORDER_2_IN_2_GA3(x2, x5, x6)
IF_INORDER_2_IN_1_GA5(x1, x2, x3, x4, x5)  =  IF_INORDER_2_IN_1_GA3(x2, x3, x5)
IF_INORDER_2_IN_3_GA7(x1, x2, x3, x4, x5, x6, x7)  =  IF_INORDER_2_IN_3_GA1(x7)
APPEND_3_IN_GGA3(x1, x2, x3)  =  APPEND_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

INORDER_2_IN_GA2(tree_33(L, V, R), I) -> IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_in_ga2(L, LI))
INORDER_2_IN_GA2(tree_33(L, V, R), I) -> INORDER_2_IN_GA2(L, LI)
IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> INORDER_2_IN_GA2(R, RI)
IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> IF_INORDER_2_IN_3_GA7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> APPEND_3_IN_GGA3(LI, ._22(V, RI), I)
APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_GGA5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GGA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)

The argument filtering Pi contains the following mapping:
inorder_2_in_ga2(x1, x2)  =  inorder_2_in_ga1(x1)
nil_0  =  nil_0
[]_0  =  []_0
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
._22(x1, x2)  =  ._22(x1, x2)
inorder_2_out_ga2(x1, x2)  =  inorder_2_out_ga1(x2)
if_inorder_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_inorder_2_in_1_ga3(x2, x3, x5)
if_inorder_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_inorder_2_in_2_ga3(x2, x5, x6)
if_inorder_2_in_3_ga7(x1, x2, x3, x4, x5, x6, x7)  =  if_inorder_2_in_3_ga1(x7)
append_3_in_gga3(x1, x2, x3)  =  append_3_in_gga2(x1, x2)
append_3_out_gga3(x1, x2, x3)  =  append_3_out_gga1(x3)
if_append_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gga2(x1, x5)
INORDER_2_IN_GA2(x1, x2)  =  INORDER_2_IN_GA1(x1)
IF_APPEND_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_APPEND_3_IN_1_GGA2(x1, x5)
IF_INORDER_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_INORDER_2_IN_2_GA3(x2, x5, x6)
IF_INORDER_2_IN_1_GA5(x1, x2, x3, x4, x5)  =  IF_INORDER_2_IN_1_GA3(x2, x3, x5)
IF_INORDER_2_IN_3_GA7(x1, x2, x3, x4, x5, x6, x7)  =  IF_INORDER_2_IN_3_GA1(x7)
APPEND_3_IN_GGA3(x1, x2, x3)  =  APPEND_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 4 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GGA3(Xs, Ys, Zs)

The TRS R consists of the following rules:

inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)

The argument filtering Pi contains the following mapping:
inorder_2_in_ga2(x1, x2)  =  inorder_2_in_ga1(x1)
nil_0  =  nil_0
[]_0  =  []_0
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
._22(x1, x2)  =  ._22(x1, x2)
inorder_2_out_ga2(x1, x2)  =  inorder_2_out_ga1(x2)
if_inorder_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_inorder_2_in_1_ga3(x2, x3, x5)
if_inorder_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_inorder_2_in_2_ga3(x2, x5, x6)
if_inorder_2_in_3_ga7(x1, x2, x3, x4, x5, x6, x7)  =  if_inorder_2_in_3_ga1(x7)
append_3_in_gga3(x1, x2, x3)  =  append_3_in_gga2(x1, x2)
append_3_out_gga3(x1, x2, x3)  =  append_3_out_gga1(x3)
if_append_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gga2(x1, x5)
APPEND_3_IN_GGA3(x1, x2, x3)  =  APPEND_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GGA3(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
APPEND_3_IN_GGA3(x1, x2, x3)  =  APPEND_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APPEND_3_IN_GGA2(._22(X, Xs), Ys) -> APPEND_3_IN_GGA2(Xs, Ys)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APPEND_3_IN_GGA2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> INORDER_2_IN_GA2(R, RI)
INORDER_2_IN_GA2(tree_33(L, V, R), I) -> IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_in_ga2(L, LI))
INORDER_2_IN_GA2(tree_33(L, V, R), I) -> INORDER_2_IN_GA2(L, LI)

The TRS R consists of the following rules:

inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)

The argument filtering Pi contains the following mapping:
inorder_2_in_ga2(x1, x2)  =  inorder_2_in_ga1(x1)
nil_0  =  nil_0
[]_0  =  []_0
tree_33(x1, x2, x3)  =  tree_33(x1, x2, x3)
._22(x1, x2)  =  ._22(x1, x2)
inorder_2_out_ga2(x1, x2)  =  inorder_2_out_ga1(x2)
if_inorder_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_inorder_2_in_1_ga3(x2, x3, x5)
if_inorder_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_inorder_2_in_2_ga3(x2, x5, x6)
if_inorder_2_in_3_ga7(x1, x2, x3, x4, x5, x6, x7)  =  if_inorder_2_in_3_ga1(x7)
append_3_in_gga3(x1, x2, x3)  =  append_3_in_gga2(x1, x2)
append_3_out_gga3(x1, x2, x3)  =  append_3_out_gga1(x3)
if_append_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append_3_in_1_gga2(x1, x5)
INORDER_2_IN_GA2(x1, x2)  =  INORDER_2_IN_GA1(x1)
IF_INORDER_2_IN_1_GA5(x1, x2, x3, x4, x5)  =  IF_INORDER_2_IN_1_GA3(x2, x3, x5)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ PiDPToQDPProof
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

IF_INORDER_2_IN_1_GA3(V, R, inorder_2_out_ga1(LI)) -> INORDER_2_IN_GA1(R)
INORDER_2_IN_GA1(tree_33(L, V, R)) -> IF_INORDER_2_IN_1_GA3(V, R, inorder_2_in_ga1(L))
INORDER_2_IN_GA1(tree_33(L, V, R)) -> INORDER_2_IN_GA1(L)

The TRS R consists of the following rules:

inorder_2_in_ga1(nil_0) -> inorder_2_out_ga1([]_0)
inorder_2_in_ga1(tree_33(L, V, R)) -> if_inorder_2_in_1_ga3(V, R, inorder_2_in_ga1(L))
if_inorder_2_in_1_ga3(V, R, inorder_2_out_ga1(LI)) -> if_inorder_2_in_2_ga3(V, LI, inorder_2_in_ga1(R))
if_inorder_2_in_2_ga3(V, LI, inorder_2_out_ga1(RI)) -> if_inorder_2_in_3_ga1(append_3_in_gga2(LI, ._22(V, RI)))
append_3_in_gga2([]_0, X) -> append_3_out_gga1(X)
append_3_in_gga2(._22(X, Xs), Ys) -> if_append_3_in_1_gga2(X, append_3_in_gga2(Xs, Ys))
if_append_3_in_1_gga2(X, append_3_out_gga1(Zs)) -> append_3_out_gga1(._22(X, Zs))
if_inorder_2_in_3_ga1(append_3_out_gga1(I)) -> inorder_2_out_ga1(I)

The set Q consists of the following terms:

inorder_2_in_ga1(x0)
if_inorder_2_in_1_ga3(x0, x1, x2)
if_inorder_2_in_2_ga3(x0, x1, x2)
append_3_in_gga2(x0, x1)
if_append_3_in_1_gga2(x0, x1)
if_inorder_2_in_3_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {INORDER_2_IN_GA1, IF_INORDER_2_IN_1_GA3}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: