↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
inorder2: (b,f)
append3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)
INORDER_2_IN_GA2(tree_33(L, V, R), I) -> IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_in_ga2(L, LI))
INORDER_2_IN_GA2(tree_33(L, V, R), I) -> INORDER_2_IN_GA2(L, LI)
IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> INORDER_2_IN_GA2(R, RI)
IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> IF_INORDER_2_IN_3_GA7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> APPEND_3_IN_GGA3(LI, ._22(V, RI), I)
APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_GGA5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GGA3(Xs, Ys, Zs)
inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
INORDER_2_IN_GA2(tree_33(L, V, R), I) -> IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_in_ga2(L, LI))
INORDER_2_IN_GA2(tree_33(L, V, R), I) -> INORDER_2_IN_GA2(L, LI)
IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> INORDER_2_IN_GA2(R, RI)
IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> IF_INORDER_2_IN_3_GA7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
IF_INORDER_2_IN_2_GA6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> APPEND_3_IN_GGA3(LI, ._22(V, RI), I)
APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APPEND_3_IN_1_GGA5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GGA3(Xs, Ys, Zs)
inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GGA3(Xs, Ys, Zs)
inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APPEND_3_IN_GGA3(._22(X, Xs), Ys, ._22(X, Zs)) -> APPEND_3_IN_GGA3(Xs, Ys, Zs)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
APPEND_3_IN_GGA2(._22(X, Xs), Ys) -> APPEND_3_IN_GGA2(Xs, Ys)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> INORDER_2_IN_GA2(R, RI)
INORDER_2_IN_GA2(tree_33(L, V, R), I) -> IF_INORDER_2_IN_1_GA5(L, V, R, I, inorder_2_in_ga2(L, LI))
INORDER_2_IN_GA2(tree_33(L, V, R), I) -> INORDER_2_IN_GA2(L, LI)
inorder_2_in_ga2(nil_0, []_0) -> inorder_2_out_ga2(nil_0, []_0)
inorder_2_in_ga2(tree_33(L, V, R), I) -> if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_in_ga2(L, LI))
if_inorder_2_in_1_ga5(L, V, R, I, inorder_2_out_ga2(L, LI)) -> if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_in_ga2(R, RI))
if_inorder_2_in_2_ga6(L, V, R, I, LI, inorder_2_out_ga2(R, RI)) -> if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_in_gga3(LI, ._22(V, RI), I))
append_3_in_gga3([]_0, X, X) -> append_3_out_gga3([]_0, X, X)
append_3_in_gga3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_in_gga3(Xs, Ys, Zs))
if_append_3_in_1_gga5(X, Xs, Ys, Zs, append_3_out_gga3(Xs, Ys, Zs)) -> append_3_out_gga3(._22(X, Xs), Ys, ._22(X, Zs))
if_inorder_2_in_3_ga7(L, V, R, I, LI, RI, append_3_out_gga3(LI, ._22(V, RI), I)) -> inorder_2_out_ga2(tree_33(L, V, R), I)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
IF_INORDER_2_IN_1_GA3(V, R, inorder_2_out_ga1(LI)) -> INORDER_2_IN_GA1(R)
INORDER_2_IN_GA1(tree_33(L, V, R)) -> IF_INORDER_2_IN_1_GA3(V, R, inorder_2_in_ga1(L))
INORDER_2_IN_GA1(tree_33(L, V, R)) -> INORDER_2_IN_GA1(L)
inorder_2_in_ga1(nil_0) -> inorder_2_out_ga1([]_0)
inorder_2_in_ga1(tree_33(L, V, R)) -> if_inorder_2_in_1_ga3(V, R, inorder_2_in_ga1(L))
if_inorder_2_in_1_ga3(V, R, inorder_2_out_ga1(LI)) -> if_inorder_2_in_2_ga3(V, LI, inorder_2_in_ga1(R))
if_inorder_2_in_2_ga3(V, LI, inorder_2_out_ga1(RI)) -> if_inorder_2_in_3_ga1(append_3_in_gga2(LI, ._22(V, RI)))
append_3_in_gga2([]_0, X) -> append_3_out_gga1(X)
append_3_in_gga2(._22(X, Xs), Ys) -> if_append_3_in_1_gga2(X, append_3_in_gga2(Xs, Ys))
if_append_3_in_1_gga2(X, append_3_out_gga1(Zs)) -> append_3_out_gga1(._22(X, Zs))
if_inorder_2_in_3_ga1(append_3_out_gga1(I)) -> inorder_2_out_ga1(I)
inorder_2_in_ga1(x0)
if_inorder_2_in_1_ga3(x0, x1, x2)
if_inorder_2_in_2_ga3(x0, x1, x2)
append_3_in_gga2(x0, x1)
if_append_3_in_1_gga2(x0, x1)
if_inorder_2_in_3_ga1(x0)
From the DPs we obtained the following set of size-change graphs: