Left Termination of the query pattern app(f,f,b) w.r.t. the given Prolog program could successfully be proven:
↳ PROLOG
↳ PrologToPiTRSProof
app3({}0, X, X).
app3(.2(X, Xs), Ys, .2(X, Zs)) :- app3(Xs, Ys, Zs).
With regard to the inferred argument filtering the predicates were used in the following modes:
app3: (f,f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
app_3_in_aag3([]_0, X, X) -> app_3_out_aag3([]_0, X, X)
app_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aag5(X, Xs, Ys, Zs, app_3_in_aag3(Xs, Ys, Zs))
if_app_3_in_1_aag5(X, Xs, Ys, Zs, app_3_out_aag3(Xs, Ys, Zs)) -> app_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
The argument filtering Pi contains the following mapping:
app_3_in_aag3(x1, x2, x3) = app_3_in_aag1(x3)
[]_0 = []_0
._22(x1, x2) = ._22(x1, x2)
app_3_out_aag3(x1, x2, x3) = app_3_out_aag2(x1, x2)
if_app_3_in_1_aag5(x1, x2, x3, x4, x5) = if_app_3_in_1_aag2(x1, x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
app_3_in_aag3([]_0, X, X) -> app_3_out_aag3([]_0, X, X)
app_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aag5(X, Xs, Ys, Zs, app_3_in_aag3(Xs, Ys, Zs))
if_app_3_in_1_aag5(X, Xs, Ys, Zs, app_3_out_aag3(Xs, Ys, Zs)) -> app_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
The argument filtering Pi contains the following mapping:
app_3_in_aag3(x1, x2, x3) = app_3_in_aag1(x3)
[]_0 = []_0
._22(x1, x2) = ._22(x1, x2)
app_3_out_aag3(x1, x2, x3) = app_3_out_aag2(x1, x2)
if_app_3_in_1_aag5(x1, x2, x3, x4, x5) = if_app_3_in_1_aag2(x1, x5)
Pi DP problem:
The TRS P consists of the following rules:
APP_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_AAG5(X, Xs, Ys, Zs, app_3_in_aag3(Xs, Ys, Zs))
APP_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAG3(Xs, Ys, Zs)
The TRS R consists of the following rules:
app_3_in_aag3([]_0, X, X) -> app_3_out_aag3([]_0, X, X)
app_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aag5(X, Xs, Ys, Zs, app_3_in_aag3(Xs, Ys, Zs))
if_app_3_in_1_aag5(X, Xs, Ys, Zs, app_3_out_aag3(Xs, Ys, Zs)) -> app_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
The argument filtering Pi contains the following mapping:
app_3_in_aag3(x1, x2, x3) = app_3_in_aag1(x3)
[]_0 = []_0
._22(x1, x2) = ._22(x1, x2)
app_3_out_aag3(x1, x2, x3) = app_3_out_aag2(x1, x2)
if_app_3_in_1_aag5(x1, x2, x3, x4, x5) = if_app_3_in_1_aag2(x1, x5)
IF_APP_3_IN_1_AAG5(x1, x2, x3, x4, x5) = IF_APP_3_IN_1_AAG2(x1, x5)
APP_3_IN_AAG3(x1, x2, x3) = APP_3_IN_AAG1(x3)
We have to consider all (P,R,Pi)-chains
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
APP_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> IF_APP_3_IN_1_AAG5(X, Xs, Ys, Zs, app_3_in_aag3(Xs, Ys, Zs))
APP_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAG3(Xs, Ys, Zs)
The TRS R consists of the following rules:
app_3_in_aag3([]_0, X, X) -> app_3_out_aag3([]_0, X, X)
app_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aag5(X, Xs, Ys, Zs, app_3_in_aag3(Xs, Ys, Zs))
if_app_3_in_1_aag5(X, Xs, Ys, Zs, app_3_out_aag3(Xs, Ys, Zs)) -> app_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
The argument filtering Pi contains the following mapping:
app_3_in_aag3(x1, x2, x3) = app_3_in_aag1(x3)
[]_0 = []_0
._22(x1, x2) = ._22(x1, x2)
app_3_out_aag3(x1, x2, x3) = app_3_out_aag2(x1, x2)
if_app_3_in_1_aag5(x1, x2, x3, x4, x5) = if_app_3_in_1_aag2(x1, x5)
IF_APP_3_IN_1_AAG5(x1, x2, x3, x4, x5) = IF_APP_3_IN_1_AAG2(x1, x5)
APP_3_IN_AAG3(x1, x2, x3) = APP_3_IN_AAG1(x3)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 1 less node.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
APP_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAG3(Xs, Ys, Zs)
The TRS R consists of the following rules:
app_3_in_aag3([]_0, X, X) -> app_3_out_aag3([]_0, X, X)
app_3_in_aag3(._22(X, Xs), Ys, ._22(X, Zs)) -> if_app_3_in_1_aag5(X, Xs, Ys, Zs, app_3_in_aag3(Xs, Ys, Zs))
if_app_3_in_1_aag5(X, Xs, Ys, Zs, app_3_out_aag3(Xs, Ys, Zs)) -> app_3_out_aag3(._22(X, Xs), Ys, ._22(X, Zs))
The argument filtering Pi contains the following mapping:
app_3_in_aag3(x1, x2, x3) = app_3_in_aag1(x3)
[]_0 = []_0
._22(x1, x2) = ._22(x1, x2)
app_3_out_aag3(x1, x2, x3) = app_3_out_aag2(x1, x2)
if_app_3_in_1_aag5(x1, x2, x3, x4, x5) = if_app_3_in_1_aag2(x1, x5)
APP_3_IN_AAG3(x1, x2, x3) = APP_3_IN_AAG1(x3)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
APP_3_IN_AAG3(._22(X, Xs), Ys, ._22(X, Zs)) -> APP_3_IN_AAG3(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2) = ._22(x1, x2)
APP_3_IN_AAG3(x1, x2, x3) = APP_3_IN_AAG1(x3)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
APP_3_IN_AAG1(._22(X, Zs)) -> APP_3_IN_AAG1(Zs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APP_3_IN_AAG1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- APP_3_IN_AAG1(._22(X, Zs)) -> APP_3_IN_AAG1(Zs)
The graph contains the following edges 1 > 1