Left Termination of the query pattern rev(b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

rev2(LS, RES) :- r13(LS, {}0, RES).
r13({}0, RES, RES).
r13(.2(X, Xs), Accm, RES) :- r13(Xs, .2(X, Accm), RES).


With regard to the inferred argument filtering the predicates were used in the following modes:
rev2: (b,f)
r13: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


rev_2_in_ga2(LS, RES) -> if_rev_2_in_1_ga3(LS, RES, r1_3_in_gga3(LS, []_0, RES))
r1_3_in_gga3([]_0, RES, RES) -> r1_3_out_gga3([]_0, RES, RES)
r1_3_in_gga3(._22(X, Xs), Accm, RES) -> if_r1_3_in_1_gga5(X, Xs, Accm, RES, r1_3_in_gga3(Xs, ._22(X, Accm), RES))
if_r1_3_in_1_gga5(X, Xs, Accm, RES, r1_3_out_gga3(Xs, ._22(X, Accm), RES)) -> r1_3_out_gga3(._22(X, Xs), Accm, RES)
if_rev_2_in_1_ga3(LS, RES, r1_3_out_gga3(LS, []_0, RES)) -> rev_2_out_ga2(LS, RES)

The argument filtering Pi contains the following mapping:
rev_2_in_ga2(x1, x2)  =  rev_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
if_rev_2_in_1_ga3(x1, x2, x3)  =  if_rev_2_in_1_ga1(x3)
r1_3_in_gga3(x1, x2, x3)  =  r1_3_in_gga2(x1, x2)
r1_3_out_gga3(x1, x2, x3)  =  r1_3_out_gga1(x3)
if_r1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_r1_3_in_1_gga1(x5)
rev_2_out_ga2(x1, x2)  =  rev_2_out_ga1(x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

rev_2_in_ga2(LS, RES) -> if_rev_2_in_1_ga3(LS, RES, r1_3_in_gga3(LS, []_0, RES))
r1_3_in_gga3([]_0, RES, RES) -> r1_3_out_gga3([]_0, RES, RES)
r1_3_in_gga3(._22(X, Xs), Accm, RES) -> if_r1_3_in_1_gga5(X, Xs, Accm, RES, r1_3_in_gga3(Xs, ._22(X, Accm), RES))
if_r1_3_in_1_gga5(X, Xs, Accm, RES, r1_3_out_gga3(Xs, ._22(X, Accm), RES)) -> r1_3_out_gga3(._22(X, Xs), Accm, RES)
if_rev_2_in_1_ga3(LS, RES, r1_3_out_gga3(LS, []_0, RES)) -> rev_2_out_ga2(LS, RES)

The argument filtering Pi contains the following mapping:
rev_2_in_ga2(x1, x2)  =  rev_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
if_rev_2_in_1_ga3(x1, x2, x3)  =  if_rev_2_in_1_ga1(x3)
r1_3_in_gga3(x1, x2, x3)  =  r1_3_in_gga2(x1, x2)
r1_3_out_gga3(x1, x2, x3)  =  r1_3_out_gga1(x3)
if_r1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_r1_3_in_1_gga1(x5)
rev_2_out_ga2(x1, x2)  =  rev_2_out_ga1(x2)


Pi DP problem:
The TRS P consists of the following rules:

REV_2_IN_GA2(LS, RES) -> IF_REV_2_IN_1_GA3(LS, RES, r1_3_in_gga3(LS, []_0, RES))
REV_2_IN_GA2(LS, RES) -> R1_3_IN_GGA3(LS, []_0, RES)
R1_3_IN_GGA3(._22(X, Xs), Accm, RES) -> IF_R1_3_IN_1_GGA5(X, Xs, Accm, RES, r1_3_in_gga3(Xs, ._22(X, Accm), RES))
R1_3_IN_GGA3(._22(X, Xs), Accm, RES) -> R1_3_IN_GGA3(Xs, ._22(X, Accm), RES)

The TRS R consists of the following rules:

rev_2_in_ga2(LS, RES) -> if_rev_2_in_1_ga3(LS, RES, r1_3_in_gga3(LS, []_0, RES))
r1_3_in_gga3([]_0, RES, RES) -> r1_3_out_gga3([]_0, RES, RES)
r1_3_in_gga3(._22(X, Xs), Accm, RES) -> if_r1_3_in_1_gga5(X, Xs, Accm, RES, r1_3_in_gga3(Xs, ._22(X, Accm), RES))
if_r1_3_in_1_gga5(X, Xs, Accm, RES, r1_3_out_gga3(Xs, ._22(X, Accm), RES)) -> r1_3_out_gga3(._22(X, Xs), Accm, RES)
if_rev_2_in_1_ga3(LS, RES, r1_3_out_gga3(LS, []_0, RES)) -> rev_2_out_ga2(LS, RES)

The argument filtering Pi contains the following mapping:
rev_2_in_ga2(x1, x2)  =  rev_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
if_rev_2_in_1_ga3(x1, x2, x3)  =  if_rev_2_in_1_ga1(x3)
r1_3_in_gga3(x1, x2, x3)  =  r1_3_in_gga2(x1, x2)
r1_3_out_gga3(x1, x2, x3)  =  r1_3_out_gga1(x3)
if_r1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_r1_3_in_1_gga1(x5)
rev_2_out_ga2(x1, x2)  =  rev_2_out_ga1(x2)
REV_2_IN_GA2(x1, x2)  =  REV_2_IN_GA1(x1)
IF_REV_2_IN_1_GA3(x1, x2, x3)  =  IF_REV_2_IN_1_GA1(x3)
R1_3_IN_GGA3(x1, x2, x3)  =  R1_3_IN_GGA2(x1, x2)
IF_R1_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_R1_3_IN_1_GGA1(x5)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

REV_2_IN_GA2(LS, RES) -> IF_REV_2_IN_1_GA3(LS, RES, r1_3_in_gga3(LS, []_0, RES))
REV_2_IN_GA2(LS, RES) -> R1_3_IN_GGA3(LS, []_0, RES)
R1_3_IN_GGA3(._22(X, Xs), Accm, RES) -> IF_R1_3_IN_1_GGA5(X, Xs, Accm, RES, r1_3_in_gga3(Xs, ._22(X, Accm), RES))
R1_3_IN_GGA3(._22(X, Xs), Accm, RES) -> R1_3_IN_GGA3(Xs, ._22(X, Accm), RES)

The TRS R consists of the following rules:

rev_2_in_ga2(LS, RES) -> if_rev_2_in_1_ga3(LS, RES, r1_3_in_gga3(LS, []_0, RES))
r1_3_in_gga3([]_0, RES, RES) -> r1_3_out_gga3([]_0, RES, RES)
r1_3_in_gga3(._22(X, Xs), Accm, RES) -> if_r1_3_in_1_gga5(X, Xs, Accm, RES, r1_3_in_gga3(Xs, ._22(X, Accm), RES))
if_r1_3_in_1_gga5(X, Xs, Accm, RES, r1_3_out_gga3(Xs, ._22(X, Accm), RES)) -> r1_3_out_gga3(._22(X, Xs), Accm, RES)
if_rev_2_in_1_ga3(LS, RES, r1_3_out_gga3(LS, []_0, RES)) -> rev_2_out_ga2(LS, RES)

The argument filtering Pi contains the following mapping:
rev_2_in_ga2(x1, x2)  =  rev_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
if_rev_2_in_1_ga3(x1, x2, x3)  =  if_rev_2_in_1_ga1(x3)
r1_3_in_gga3(x1, x2, x3)  =  r1_3_in_gga2(x1, x2)
r1_3_out_gga3(x1, x2, x3)  =  r1_3_out_gga1(x3)
if_r1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_r1_3_in_1_gga1(x5)
rev_2_out_ga2(x1, x2)  =  rev_2_out_ga1(x2)
REV_2_IN_GA2(x1, x2)  =  REV_2_IN_GA1(x1)
IF_REV_2_IN_1_GA3(x1, x2, x3)  =  IF_REV_2_IN_1_GA1(x3)
R1_3_IN_GGA3(x1, x2, x3)  =  R1_3_IN_GGA2(x1, x2)
IF_R1_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_R1_3_IN_1_GGA1(x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

R1_3_IN_GGA3(._22(X, Xs), Accm, RES) -> R1_3_IN_GGA3(Xs, ._22(X, Accm), RES)

The TRS R consists of the following rules:

rev_2_in_ga2(LS, RES) -> if_rev_2_in_1_ga3(LS, RES, r1_3_in_gga3(LS, []_0, RES))
r1_3_in_gga3([]_0, RES, RES) -> r1_3_out_gga3([]_0, RES, RES)
r1_3_in_gga3(._22(X, Xs), Accm, RES) -> if_r1_3_in_1_gga5(X, Xs, Accm, RES, r1_3_in_gga3(Xs, ._22(X, Accm), RES))
if_r1_3_in_1_gga5(X, Xs, Accm, RES, r1_3_out_gga3(Xs, ._22(X, Accm), RES)) -> r1_3_out_gga3(._22(X, Xs), Accm, RES)
if_rev_2_in_1_ga3(LS, RES, r1_3_out_gga3(LS, []_0, RES)) -> rev_2_out_ga2(LS, RES)

The argument filtering Pi contains the following mapping:
rev_2_in_ga2(x1, x2)  =  rev_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
if_rev_2_in_1_ga3(x1, x2, x3)  =  if_rev_2_in_1_ga1(x3)
r1_3_in_gga3(x1, x2, x3)  =  r1_3_in_gga2(x1, x2)
r1_3_out_gga3(x1, x2, x3)  =  r1_3_out_gga1(x3)
if_r1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_r1_3_in_1_gga1(x5)
rev_2_out_ga2(x1, x2)  =  rev_2_out_ga1(x2)
R1_3_IN_GGA3(x1, x2, x3)  =  R1_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

R1_3_IN_GGA3(._22(X, Xs), Accm, RES) -> R1_3_IN_GGA3(Xs, ._22(X, Accm), RES)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
R1_3_IN_GGA3(x1, x2, x3)  =  R1_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP
                      ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

R1_3_IN_GGA2(._22(X, Xs), Accm) -> R1_3_IN_GGA2(Xs, ._22(X, Accm))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {R1_3_IN_GGA2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: