↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
div3: (b,b,f)
div_s3: (b,b,f)
lss2: (b,b)
sub3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
div_3_in_gga3(X, s_11(Y), Z) -> if_div_3_in_1_gga4(X, Y, Z, div_s_3_in_gga3(X, Y, Z))
div_s_3_in_gga3(0_0, Y, 0_0) -> div_s_3_out_gga3(0_0, Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, 0_0) -> if_div_s_3_in_1_gga3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(s_11(X), s_11(Y)) -> if_lss_2_in_1_gg3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(0_0, s_11(Y)) -> lss_2_out_gg2(0_0, s_11(Y))
if_lss_2_in_1_gg3(X, Y, lss_2_out_gg2(X, Y)) -> lss_2_out_gg2(s_11(X), s_11(Y))
if_div_s_3_in_1_gga3(X, Y, lss_2_out_gg2(X, Y)) -> div_s_3_out_gga3(s_11(X), Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_div_s_3_in_2_gga4(X, Y, Z, sub_3_in_gga3(X, Y, R))
sub_3_in_gga3(s_11(X), s_11(Y), Z) -> if_sub_3_in_1_gga4(X, Y, Z, sub_3_in_gga3(X, Y, Z))
sub_3_in_gga3(X, 0_0, X) -> sub_3_out_gga3(X, 0_0, X)
if_sub_3_in_1_gga4(X, Y, Z, sub_3_out_gga3(X, Y, Z)) -> sub_3_out_gga3(s_11(X), s_11(Y), Z)
if_div_s_3_in_2_gga4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_in_gga3(R, Y, Z))
if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_out_gga3(R, Y, Z)) -> div_s_3_out_gga3(s_11(X), Y, s_11(Z))
if_div_3_in_1_gga4(X, Y, Z, div_s_3_out_gga3(X, Y, Z)) -> div_3_out_gga3(X, s_11(Y), Z)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
div_3_in_gga3(X, s_11(Y), Z) -> if_div_3_in_1_gga4(X, Y, Z, div_s_3_in_gga3(X, Y, Z))
div_s_3_in_gga3(0_0, Y, 0_0) -> div_s_3_out_gga3(0_0, Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, 0_0) -> if_div_s_3_in_1_gga3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(s_11(X), s_11(Y)) -> if_lss_2_in_1_gg3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(0_0, s_11(Y)) -> lss_2_out_gg2(0_0, s_11(Y))
if_lss_2_in_1_gg3(X, Y, lss_2_out_gg2(X, Y)) -> lss_2_out_gg2(s_11(X), s_11(Y))
if_div_s_3_in_1_gga3(X, Y, lss_2_out_gg2(X, Y)) -> div_s_3_out_gga3(s_11(X), Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_div_s_3_in_2_gga4(X, Y, Z, sub_3_in_gga3(X, Y, R))
sub_3_in_gga3(s_11(X), s_11(Y), Z) -> if_sub_3_in_1_gga4(X, Y, Z, sub_3_in_gga3(X, Y, Z))
sub_3_in_gga3(X, 0_0, X) -> sub_3_out_gga3(X, 0_0, X)
if_sub_3_in_1_gga4(X, Y, Z, sub_3_out_gga3(X, Y, Z)) -> sub_3_out_gga3(s_11(X), s_11(Y), Z)
if_div_s_3_in_2_gga4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_in_gga3(R, Y, Z))
if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_out_gga3(R, Y, Z)) -> div_s_3_out_gga3(s_11(X), Y, s_11(Z))
if_div_3_in_1_gga4(X, Y, Z, div_s_3_out_gga3(X, Y, Z)) -> div_3_out_gga3(X, s_11(Y), Z)
DIV_3_IN_GGA3(X, s_11(Y), Z) -> IF_DIV_3_IN_1_GGA4(X, Y, Z, div_s_3_in_gga3(X, Y, Z))
DIV_3_IN_GGA3(X, s_11(Y), Z) -> DIV_S_3_IN_GGA3(X, Y, Z)
DIV_S_3_IN_GGA3(s_11(X), Y, 0_0) -> IF_DIV_S_3_IN_1_GGA3(X, Y, lss_2_in_gg2(X, Y))
DIV_S_3_IN_GGA3(s_11(X), Y, 0_0) -> LSS_2_IN_GG2(X, Y)
LSS_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LSS_2_IN_1_GG3(X, Y, lss_2_in_gg2(X, Y))
LSS_2_IN_GG2(s_11(X), s_11(Y)) -> LSS_2_IN_GG2(X, Y)
DIV_S_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_DIV_S_3_IN_2_GGA4(X, Y, Z, sub_3_in_gga3(X, Y, R))
DIV_S_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> SUB_3_IN_GGA3(X, Y, R)
SUB_3_IN_GGA3(s_11(X), s_11(Y), Z) -> IF_SUB_3_IN_1_GGA4(X, Y, Z, sub_3_in_gga3(X, Y, Z))
SUB_3_IN_GGA3(s_11(X), s_11(Y), Z) -> SUB_3_IN_GGA3(X, Y, Z)
IF_DIV_S_3_IN_2_GGA4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> IF_DIV_S_3_IN_3_GGA5(X, Y, Z, R, div_s_3_in_gga3(R, Y, Z))
IF_DIV_S_3_IN_2_GGA4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> DIV_S_3_IN_GGA3(R, Y, Z)
div_3_in_gga3(X, s_11(Y), Z) -> if_div_3_in_1_gga4(X, Y, Z, div_s_3_in_gga3(X, Y, Z))
div_s_3_in_gga3(0_0, Y, 0_0) -> div_s_3_out_gga3(0_0, Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, 0_0) -> if_div_s_3_in_1_gga3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(s_11(X), s_11(Y)) -> if_lss_2_in_1_gg3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(0_0, s_11(Y)) -> lss_2_out_gg2(0_0, s_11(Y))
if_lss_2_in_1_gg3(X, Y, lss_2_out_gg2(X, Y)) -> lss_2_out_gg2(s_11(X), s_11(Y))
if_div_s_3_in_1_gga3(X, Y, lss_2_out_gg2(X, Y)) -> div_s_3_out_gga3(s_11(X), Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_div_s_3_in_2_gga4(X, Y, Z, sub_3_in_gga3(X, Y, R))
sub_3_in_gga3(s_11(X), s_11(Y), Z) -> if_sub_3_in_1_gga4(X, Y, Z, sub_3_in_gga3(X, Y, Z))
sub_3_in_gga3(X, 0_0, X) -> sub_3_out_gga3(X, 0_0, X)
if_sub_3_in_1_gga4(X, Y, Z, sub_3_out_gga3(X, Y, Z)) -> sub_3_out_gga3(s_11(X), s_11(Y), Z)
if_div_s_3_in_2_gga4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_in_gga3(R, Y, Z))
if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_out_gga3(R, Y, Z)) -> div_s_3_out_gga3(s_11(X), Y, s_11(Z))
if_div_3_in_1_gga4(X, Y, Z, div_s_3_out_gga3(X, Y, Z)) -> div_3_out_gga3(X, s_11(Y), Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
DIV_3_IN_GGA3(X, s_11(Y), Z) -> IF_DIV_3_IN_1_GGA4(X, Y, Z, div_s_3_in_gga3(X, Y, Z))
DIV_3_IN_GGA3(X, s_11(Y), Z) -> DIV_S_3_IN_GGA3(X, Y, Z)
DIV_S_3_IN_GGA3(s_11(X), Y, 0_0) -> IF_DIV_S_3_IN_1_GGA3(X, Y, lss_2_in_gg2(X, Y))
DIV_S_3_IN_GGA3(s_11(X), Y, 0_0) -> LSS_2_IN_GG2(X, Y)
LSS_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LSS_2_IN_1_GG3(X, Y, lss_2_in_gg2(X, Y))
LSS_2_IN_GG2(s_11(X), s_11(Y)) -> LSS_2_IN_GG2(X, Y)
DIV_S_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_DIV_S_3_IN_2_GGA4(X, Y, Z, sub_3_in_gga3(X, Y, R))
DIV_S_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> SUB_3_IN_GGA3(X, Y, R)
SUB_3_IN_GGA3(s_11(X), s_11(Y), Z) -> IF_SUB_3_IN_1_GGA4(X, Y, Z, sub_3_in_gga3(X, Y, Z))
SUB_3_IN_GGA3(s_11(X), s_11(Y), Z) -> SUB_3_IN_GGA3(X, Y, Z)
IF_DIV_S_3_IN_2_GGA4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> IF_DIV_S_3_IN_3_GGA5(X, Y, Z, R, div_s_3_in_gga3(R, Y, Z))
IF_DIV_S_3_IN_2_GGA4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> DIV_S_3_IN_GGA3(R, Y, Z)
div_3_in_gga3(X, s_11(Y), Z) -> if_div_3_in_1_gga4(X, Y, Z, div_s_3_in_gga3(X, Y, Z))
div_s_3_in_gga3(0_0, Y, 0_0) -> div_s_3_out_gga3(0_0, Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, 0_0) -> if_div_s_3_in_1_gga3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(s_11(X), s_11(Y)) -> if_lss_2_in_1_gg3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(0_0, s_11(Y)) -> lss_2_out_gg2(0_0, s_11(Y))
if_lss_2_in_1_gg3(X, Y, lss_2_out_gg2(X, Y)) -> lss_2_out_gg2(s_11(X), s_11(Y))
if_div_s_3_in_1_gga3(X, Y, lss_2_out_gg2(X, Y)) -> div_s_3_out_gga3(s_11(X), Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_div_s_3_in_2_gga4(X, Y, Z, sub_3_in_gga3(X, Y, R))
sub_3_in_gga3(s_11(X), s_11(Y), Z) -> if_sub_3_in_1_gga4(X, Y, Z, sub_3_in_gga3(X, Y, Z))
sub_3_in_gga3(X, 0_0, X) -> sub_3_out_gga3(X, 0_0, X)
if_sub_3_in_1_gga4(X, Y, Z, sub_3_out_gga3(X, Y, Z)) -> sub_3_out_gga3(s_11(X), s_11(Y), Z)
if_div_s_3_in_2_gga4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_in_gga3(R, Y, Z))
if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_out_gga3(R, Y, Z)) -> div_s_3_out_gga3(s_11(X), Y, s_11(Z))
if_div_3_in_1_gga4(X, Y, Z, div_s_3_out_gga3(X, Y, Z)) -> div_3_out_gga3(X, s_11(Y), Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
SUB_3_IN_GGA3(s_11(X), s_11(Y), Z) -> SUB_3_IN_GGA3(X, Y, Z)
div_3_in_gga3(X, s_11(Y), Z) -> if_div_3_in_1_gga4(X, Y, Z, div_s_3_in_gga3(X, Y, Z))
div_s_3_in_gga3(0_0, Y, 0_0) -> div_s_3_out_gga3(0_0, Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, 0_0) -> if_div_s_3_in_1_gga3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(s_11(X), s_11(Y)) -> if_lss_2_in_1_gg3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(0_0, s_11(Y)) -> lss_2_out_gg2(0_0, s_11(Y))
if_lss_2_in_1_gg3(X, Y, lss_2_out_gg2(X, Y)) -> lss_2_out_gg2(s_11(X), s_11(Y))
if_div_s_3_in_1_gga3(X, Y, lss_2_out_gg2(X, Y)) -> div_s_3_out_gga3(s_11(X), Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_div_s_3_in_2_gga4(X, Y, Z, sub_3_in_gga3(X, Y, R))
sub_3_in_gga3(s_11(X), s_11(Y), Z) -> if_sub_3_in_1_gga4(X, Y, Z, sub_3_in_gga3(X, Y, Z))
sub_3_in_gga3(X, 0_0, X) -> sub_3_out_gga3(X, 0_0, X)
if_sub_3_in_1_gga4(X, Y, Z, sub_3_out_gga3(X, Y, Z)) -> sub_3_out_gga3(s_11(X), s_11(Y), Z)
if_div_s_3_in_2_gga4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_in_gga3(R, Y, Z))
if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_out_gga3(R, Y, Z)) -> div_s_3_out_gga3(s_11(X), Y, s_11(Z))
if_div_3_in_1_gga4(X, Y, Z, div_s_3_out_gga3(X, Y, Z)) -> div_3_out_gga3(X, s_11(Y), Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
SUB_3_IN_GGA3(s_11(X), s_11(Y), Z) -> SUB_3_IN_GGA3(X, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
SUB_3_IN_GGA2(s_11(X), s_11(Y)) -> SUB_3_IN_GGA2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LSS_2_IN_GG2(s_11(X), s_11(Y)) -> LSS_2_IN_GG2(X, Y)
div_3_in_gga3(X, s_11(Y), Z) -> if_div_3_in_1_gga4(X, Y, Z, div_s_3_in_gga3(X, Y, Z))
div_s_3_in_gga3(0_0, Y, 0_0) -> div_s_3_out_gga3(0_0, Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, 0_0) -> if_div_s_3_in_1_gga3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(s_11(X), s_11(Y)) -> if_lss_2_in_1_gg3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(0_0, s_11(Y)) -> lss_2_out_gg2(0_0, s_11(Y))
if_lss_2_in_1_gg3(X, Y, lss_2_out_gg2(X, Y)) -> lss_2_out_gg2(s_11(X), s_11(Y))
if_div_s_3_in_1_gga3(X, Y, lss_2_out_gg2(X, Y)) -> div_s_3_out_gga3(s_11(X), Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_div_s_3_in_2_gga4(X, Y, Z, sub_3_in_gga3(X, Y, R))
sub_3_in_gga3(s_11(X), s_11(Y), Z) -> if_sub_3_in_1_gga4(X, Y, Z, sub_3_in_gga3(X, Y, Z))
sub_3_in_gga3(X, 0_0, X) -> sub_3_out_gga3(X, 0_0, X)
if_sub_3_in_1_gga4(X, Y, Z, sub_3_out_gga3(X, Y, Z)) -> sub_3_out_gga3(s_11(X), s_11(Y), Z)
if_div_s_3_in_2_gga4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_in_gga3(R, Y, Z))
if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_out_gga3(R, Y, Z)) -> div_s_3_out_gga3(s_11(X), Y, s_11(Z))
if_div_3_in_1_gga4(X, Y, Z, div_s_3_out_gga3(X, Y, Z)) -> div_3_out_gga3(X, s_11(Y), Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LSS_2_IN_GG2(s_11(X), s_11(Y)) -> LSS_2_IN_GG2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LSS_2_IN_GG2(s_11(X), s_11(Y)) -> LSS_2_IN_GG2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
DIV_S_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_DIV_S_3_IN_2_GGA4(X, Y, Z, sub_3_in_gga3(X, Y, R))
IF_DIV_S_3_IN_2_GGA4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> DIV_S_3_IN_GGA3(R, Y, Z)
div_3_in_gga3(X, s_11(Y), Z) -> if_div_3_in_1_gga4(X, Y, Z, div_s_3_in_gga3(X, Y, Z))
div_s_3_in_gga3(0_0, Y, 0_0) -> div_s_3_out_gga3(0_0, Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, 0_0) -> if_div_s_3_in_1_gga3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(s_11(X), s_11(Y)) -> if_lss_2_in_1_gg3(X, Y, lss_2_in_gg2(X, Y))
lss_2_in_gg2(0_0, s_11(Y)) -> lss_2_out_gg2(0_0, s_11(Y))
if_lss_2_in_1_gg3(X, Y, lss_2_out_gg2(X, Y)) -> lss_2_out_gg2(s_11(X), s_11(Y))
if_div_s_3_in_1_gga3(X, Y, lss_2_out_gg2(X, Y)) -> div_s_3_out_gga3(s_11(X), Y, 0_0)
div_s_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_div_s_3_in_2_gga4(X, Y, Z, sub_3_in_gga3(X, Y, R))
sub_3_in_gga3(s_11(X), s_11(Y), Z) -> if_sub_3_in_1_gga4(X, Y, Z, sub_3_in_gga3(X, Y, Z))
sub_3_in_gga3(X, 0_0, X) -> sub_3_out_gga3(X, 0_0, X)
if_sub_3_in_1_gga4(X, Y, Z, sub_3_out_gga3(X, Y, Z)) -> sub_3_out_gga3(s_11(X), s_11(Y), Z)
if_div_s_3_in_2_gga4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_in_gga3(R, Y, Z))
if_div_s_3_in_3_gga5(X, Y, Z, R, div_s_3_out_gga3(R, Y, Z)) -> div_s_3_out_gga3(s_11(X), Y, s_11(Z))
if_div_3_in_1_gga4(X, Y, Z, div_s_3_out_gga3(X, Y, Z)) -> div_3_out_gga3(X, s_11(Y), Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
DIV_S_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_DIV_S_3_IN_2_GGA4(X, Y, Z, sub_3_in_gga3(X, Y, R))
IF_DIV_S_3_IN_2_GGA4(X, Y, Z, sub_3_out_gga3(X, Y, R)) -> DIV_S_3_IN_GGA3(R, Y, Z)
sub_3_in_gga3(s_11(X), s_11(Y), Z) -> if_sub_3_in_1_gga4(X, Y, Z, sub_3_in_gga3(X, Y, Z))
sub_3_in_gga3(X, 0_0, X) -> sub_3_out_gga3(X, 0_0, X)
if_sub_3_in_1_gga4(X, Y, Z, sub_3_out_gga3(X, Y, Z)) -> sub_3_out_gga3(s_11(X), s_11(Y), Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
DIV_S_3_IN_GGA2(s_11(X), Y) -> IF_DIV_S_3_IN_2_GGA2(Y, sub_3_in_gga2(X, Y))
IF_DIV_S_3_IN_2_GGA2(Y, sub_3_out_gga1(R)) -> DIV_S_3_IN_GGA2(R, Y)
sub_3_in_gga2(s_11(X), s_11(Y)) -> if_sub_3_in_1_gga1(sub_3_in_gga2(X, Y))
sub_3_in_gga2(X, 0_0) -> sub_3_out_gga1(X)
if_sub_3_in_1_gga1(sub_3_out_gga1(Z)) -> sub_3_out_gga1(Z)
sub_3_in_gga2(x0, x1)
if_sub_3_in_1_gga1(x0)
Order:Polynomial interpretation:
POL(0_0) = 0
POL(if_sub_3_in_1_gga1(x1)) = x1
POL(sub_3_out_gga1(x1)) = x1
POL(sub_3_in_gga2(x1, x2)) = x1
POL(s_11(x1)) = 1 + x1
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules.
sub_3_in_gga2(X, 0_0) -> sub_3_out_gga1(X)
sub_3_in_gga2(s_11(X), s_11(Y)) -> if_sub_3_in_1_gga1(sub_3_in_gga2(X, Y))
if_sub_3_in_1_gga1(sub_3_out_gga1(Z)) -> sub_3_out_gga1(Z)