Left Termination of the query pattern minsort(b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

minsort2({}0, {}0).
minsort2(L, .2(X, L1)) :- min12(X, L), remove3(X, L, L2), minsort2(L2, L1).
min12(M, .2(X, L)) :- min23(X, M, L).
min23(X, X, {}0).
min23(X, A, .2(M, L)) :- min3(X, M, B), min23(B, A, L).
min3(X, Y, X) :- le2(X, Y).
min3(X, Y, Y) :- gt2(X, Y).
remove3(N, .2(N, L), L).
remove3(N, .2(M, L), .2(M, L1)) :- notEq2(N, M), remove3(N, L, L1).
gt2(s1(X), s1(Y)) :- gt2(X, Y).
gt2(s1(X), 00).
le2(s1(X), s1(Y)) :- le2(X, Y).
le2(00, s1(Y)).
le2(00, 00).
notEq2(s1(X), s1(Y)) :- notEq2(X, Y).
notEq2(s1(X), 00).
notEq2(00, s1(X)).


With regard to the inferred argument filtering the predicates were used in the following modes:
minsort2: (b,f)
min12: (f,b)
min23: (b,f,b)
min3: (b,b,f)
le2: (b,b)
gt2: (b,b)
remove3: (b,b,f)
notEq2: (b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


minsort_2_in_ga2([]_0, []_0) -> minsort_2_out_ga2([]_0, []_0)
minsort_2_in_ga2(L, ._22(X, L1)) -> if_minsort_2_in_1_ga4(L, X, L1, min1_2_in_ag2(X, L))
min1_2_in_ag2(M, ._22(X, L)) -> if_min1_2_in_1_ag4(M, X, L, min2_3_in_gag3(X, M, L))
min2_3_in_gag3(X, X, []_0) -> min2_3_out_gag3(X, X, []_0)
min2_3_in_gag3(X, A, ._22(M, L)) -> if_min2_3_in_1_gag5(X, A, M, L, min_3_in_gga3(X, M, B))
min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
if_min2_3_in_1_gag5(X, A, M, L, min_3_out_gga3(X, M, B)) -> if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_out_gag3(B, A, L)) -> min2_3_out_gag3(X, A, ._22(M, L))
if_min1_2_in_1_ag4(M, X, L, min2_3_out_gag3(X, M, L)) -> min1_2_out_ag2(M, ._22(X, L))
if_minsort_2_in_1_ga4(L, X, L1, min1_2_out_ag2(X, L)) -> if_minsort_2_in_2_ga4(L, X, L1, remove_3_in_gga3(X, L, L2))
remove_3_in_gga3(N, ._22(N, L), L) -> remove_3_out_gga3(N, ._22(N, L), L)
remove_3_in_gga3(N, ._22(M, L), ._22(M, L1)) -> if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_in_gg2(N, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))
if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> if_remove_3_in_2_gga5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
if_remove_3_in_2_gga5(N, M, L, L1, remove_3_out_gga3(N, L, L1)) -> remove_3_out_gga3(N, ._22(M, L), ._22(M, L1))
if_minsort_2_in_2_ga4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_out_ga2(L2, L1)) -> minsort_2_out_ga2(L, ._22(X, L1))

The argument filtering Pi contains the following mapping:
minsort_2_in_ga2(x1, x2)  =  minsort_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
minsort_2_out_ga2(x1, x2)  =  minsort_2_out_ga1(x2)
if_minsort_2_in_1_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_1_ga2(x1, x4)
min1_2_in_ag2(x1, x2)  =  min1_2_in_ag1(x2)
if_min1_2_in_1_ag4(x1, x2, x3, x4)  =  if_min1_2_in_1_ag1(x4)
min2_3_in_gag3(x1, x2, x3)  =  min2_3_in_gag2(x1, x3)
min2_3_out_gag3(x1, x2, x3)  =  min2_3_out_gag1(x2)
if_min2_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_min2_3_in_1_gag2(x4, x5)
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_min2_3_in_2_gag6(x1, x2, x3, x4, x5, x6)  =  if_min2_3_in_2_gag1(x6)
min1_2_out_ag2(x1, x2)  =  min1_2_out_ag1(x1)
if_minsort_2_in_2_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_2_ga2(x2, x4)
remove_3_in_gga3(x1, x2, x3)  =  remove_3_in_gga2(x1, x2)
remove_3_out_gga3(x1, x2, x3)  =  remove_3_out_gga1(x3)
if_remove_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_1_gga4(x1, x2, x3, x5)
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
if_remove_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_2_gga2(x2, x5)
if_minsort_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_minsort_2_in_3_ga2(x2, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

minsort_2_in_ga2([]_0, []_0) -> minsort_2_out_ga2([]_0, []_0)
minsort_2_in_ga2(L, ._22(X, L1)) -> if_minsort_2_in_1_ga4(L, X, L1, min1_2_in_ag2(X, L))
min1_2_in_ag2(M, ._22(X, L)) -> if_min1_2_in_1_ag4(M, X, L, min2_3_in_gag3(X, M, L))
min2_3_in_gag3(X, X, []_0) -> min2_3_out_gag3(X, X, []_0)
min2_3_in_gag3(X, A, ._22(M, L)) -> if_min2_3_in_1_gag5(X, A, M, L, min_3_in_gga3(X, M, B))
min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
if_min2_3_in_1_gag5(X, A, M, L, min_3_out_gga3(X, M, B)) -> if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_out_gag3(B, A, L)) -> min2_3_out_gag3(X, A, ._22(M, L))
if_min1_2_in_1_ag4(M, X, L, min2_3_out_gag3(X, M, L)) -> min1_2_out_ag2(M, ._22(X, L))
if_minsort_2_in_1_ga4(L, X, L1, min1_2_out_ag2(X, L)) -> if_minsort_2_in_2_ga4(L, X, L1, remove_3_in_gga3(X, L, L2))
remove_3_in_gga3(N, ._22(N, L), L) -> remove_3_out_gga3(N, ._22(N, L), L)
remove_3_in_gga3(N, ._22(M, L), ._22(M, L1)) -> if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_in_gg2(N, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))
if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> if_remove_3_in_2_gga5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
if_remove_3_in_2_gga5(N, M, L, L1, remove_3_out_gga3(N, L, L1)) -> remove_3_out_gga3(N, ._22(M, L), ._22(M, L1))
if_minsort_2_in_2_ga4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_out_ga2(L2, L1)) -> minsort_2_out_ga2(L, ._22(X, L1))

The argument filtering Pi contains the following mapping:
minsort_2_in_ga2(x1, x2)  =  minsort_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
minsort_2_out_ga2(x1, x2)  =  minsort_2_out_ga1(x2)
if_minsort_2_in_1_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_1_ga2(x1, x4)
min1_2_in_ag2(x1, x2)  =  min1_2_in_ag1(x2)
if_min1_2_in_1_ag4(x1, x2, x3, x4)  =  if_min1_2_in_1_ag1(x4)
min2_3_in_gag3(x1, x2, x3)  =  min2_3_in_gag2(x1, x3)
min2_3_out_gag3(x1, x2, x3)  =  min2_3_out_gag1(x2)
if_min2_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_min2_3_in_1_gag2(x4, x5)
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_min2_3_in_2_gag6(x1, x2, x3, x4, x5, x6)  =  if_min2_3_in_2_gag1(x6)
min1_2_out_ag2(x1, x2)  =  min1_2_out_ag1(x1)
if_minsort_2_in_2_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_2_ga2(x2, x4)
remove_3_in_gga3(x1, x2, x3)  =  remove_3_in_gga2(x1, x2)
remove_3_out_gga3(x1, x2, x3)  =  remove_3_out_gga1(x3)
if_remove_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_1_gga4(x1, x2, x3, x5)
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
if_remove_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_2_gga2(x2, x5)
if_minsort_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_minsort_2_in_3_ga2(x2, x5)


Pi DP problem:
The TRS P consists of the following rules:

MINSORT_2_IN_GA2(L, ._22(X, L1)) -> IF_MINSORT_2_IN_1_GA4(L, X, L1, min1_2_in_ag2(X, L))
MINSORT_2_IN_GA2(L, ._22(X, L1)) -> MIN1_2_IN_AG2(X, L)
MIN1_2_IN_AG2(M, ._22(X, L)) -> IF_MIN1_2_IN_1_AG4(M, X, L, min2_3_in_gag3(X, M, L))
MIN1_2_IN_AG2(M, ._22(X, L)) -> MIN2_3_IN_GAG3(X, M, L)
MIN2_3_IN_GAG3(X, A, ._22(M, L)) -> IF_MIN2_3_IN_1_GAG5(X, A, M, L, min_3_in_gga3(X, M, B))
MIN2_3_IN_GAG3(X, A, ._22(M, L)) -> MIN_3_IN_GGA3(X, M, B)
MIN_3_IN_GGA3(X, Y, X) -> IF_MIN_3_IN_1_GGA3(X, Y, le_2_in_gg2(X, Y))
MIN_3_IN_GGA3(X, Y, X) -> LE_2_IN_GG2(X, Y)
LE_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LE_2_IN_1_GG3(X, Y, le_2_in_gg2(X, Y))
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
MIN_3_IN_GGA3(X, Y, Y) -> IF_MIN_3_IN_2_GGA3(X, Y, gt_2_in_gg2(X, Y))
MIN_3_IN_GGA3(X, Y, Y) -> GT_2_IN_GG2(X, Y)
GT_2_IN_GG2(s_11(X), s_11(Y)) -> IF_GT_2_IN_1_GG3(X, Y, gt_2_in_gg2(X, Y))
GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)
IF_MIN2_3_IN_1_GAG5(X, A, M, L, min_3_out_gga3(X, M, B)) -> IF_MIN2_3_IN_2_GAG6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
IF_MIN2_3_IN_1_GAG5(X, A, M, L, min_3_out_gga3(X, M, B)) -> MIN2_3_IN_GAG3(B, A, L)
IF_MINSORT_2_IN_1_GA4(L, X, L1, min1_2_out_ag2(X, L)) -> IF_MINSORT_2_IN_2_GA4(L, X, L1, remove_3_in_gga3(X, L, L2))
IF_MINSORT_2_IN_1_GA4(L, X, L1, min1_2_out_ag2(X, L)) -> REMOVE_3_IN_GGA3(X, L, L2)
REMOVE_3_IN_GGA3(N, ._22(M, L), ._22(M, L1)) -> IF_REMOVE_3_IN_1_GGA5(N, M, L, L1, notEq_2_in_gg2(N, M))
REMOVE_3_IN_GGA3(N, ._22(M, L), ._22(M, L1)) -> NOTEQ_2_IN_GG2(N, M)
NOTEQ_2_IN_GG2(s_11(X), s_11(Y)) -> IF_NOTEQ_2_IN_1_GG3(X, Y, notEq_2_in_gg2(X, Y))
NOTEQ_2_IN_GG2(s_11(X), s_11(Y)) -> NOTEQ_2_IN_GG2(X, Y)
IF_REMOVE_3_IN_1_GGA5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> IF_REMOVE_3_IN_2_GGA5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
IF_REMOVE_3_IN_1_GGA5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> REMOVE_3_IN_GGA3(N, L, L1)
IF_MINSORT_2_IN_2_GA4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> IF_MINSORT_2_IN_3_GA5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
IF_MINSORT_2_IN_2_GA4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> MINSORT_2_IN_GA2(L2, L1)

The TRS R consists of the following rules:

minsort_2_in_ga2([]_0, []_0) -> minsort_2_out_ga2([]_0, []_0)
minsort_2_in_ga2(L, ._22(X, L1)) -> if_minsort_2_in_1_ga4(L, X, L1, min1_2_in_ag2(X, L))
min1_2_in_ag2(M, ._22(X, L)) -> if_min1_2_in_1_ag4(M, X, L, min2_3_in_gag3(X, M, L))
min2_3_in_gag3(X, X, []_0) -> min2_3_out_gag3(X, X, []_0)
min2_3_in_gag3(X, A, ._22(M, L)) -> if_min2_3_in_1_gag5(X, A, M, L, min_3_in_gga3(X, M, B))
min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
if_min2_3_in_1_gag5(X, A, M, L, min_3_out_gga3(X, M, B)) -> if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_out_gag3(B, A, L)) -> min2_3_out_gag3(X, A, ._22(M, L))
if_min1_2_in_1_ag4(M, X, L, min2_3_out_gag3(X, M, L)) -> min1_2_out_ag2(M, ._22(X, L))
if_minsort_2_in_1_ga4(L, X, L1, min1_2_out_ag2(X, L)) -> if_minsort_2_in_2_ga4(L, X, L1, remove_3_in_gga3(X, L, L2))
remove_3_in_gga3(N, ._22(N, L), L) -> remove_3_out_gga3(N, ._22(N, L), L)
remove_3_in_gga3(N, ._22(M, L), ._22(M, L1)) -> if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_in_gg2(N, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))
if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> if_remove_3_in_2_gga5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
if_remove_3_in_2_gga5(N, M, L, L1, remove_3_out_gga3(N, L, L1)) -> remove_3_out_gga3(N, ._22(M, L), ._22(M, L1))
if_minsort_2_in_2_ga4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_out_ga2(L2, L1)) -> minsort_2_out_ga2(L, ._22(X, L1))

The argument filtering Pi contains the following mapping:
minsort_2_in_ga2(x1, x2)  =  minsort_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
minsort_2_out_ga2(x1, x2)  =  minsort_2_out_ga1(x2)
if_minsort_2_in_1_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_1_ga2(x1, x4)
min1_2_in_ag2(x1, x2)  =  min1_2_in_ag1(x2)
if_min1_2_in_1_ag4(x1, x2, x3, x4)  =  if_min1_2_in_1_ag1(x4)
min2_3_in_gag3(x1, x2, x3)  =  min2_3_in_gag2(x1, x3)
min2_3_out_gag3(x1, x2, x3)  =  min2_3_out_gag1(x2)
if_min2_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_min2_3_in_1_gag2(x4, x5)
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_min2_3_in_2_gag6(x1, x2, x3, x4, x5, x6)  =  if_min2_3_in_2_gag1(x6)
min1_2_out_ag2(x1, x2)  =  min1_2_out_ag1(x1)
if_minsort_2_in_2_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_2_ga2(x2, x4)
remove_3_in_gga3(x1, x2, x3)  =  remove_3_in_gga2(x1, x2)
remove_3_out_gga3(x1, x2, x3)  =  remove_3_out_gga1(x3)
if_remove_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_1_gga4(x1, x2, x3, x5)
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
if_remove_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_2_gga2(x2, x5)
if_minsort_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_minsort_2_in_3_ga2(x2, x5)
GT_2_IN_GG2(x1, x2)  =  GT_2_IN_GG2(x1, x2)
IF_GT_2_IN_1_GG3(x1, x2, x3)  =  IF_GT_2_IN_1_GG1(x3)
IF_MIN2_3_IN_2_GAG6(x1, x2, x3, x4, x5, x6)  =  IF_MIN2_3_IN_2_GAG1(x6)
IF_MINSORT_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_MINSORT_2_IN_1_GA2(x1, x4)
MINSORT_2_IN_GA2(x1, x2)  =  MINSORT_2_IN_GA1(x1)
MIN_3_IN_GGA3(x1, x2, x3)  =  MIN_3_IN_GGA2(x1, x2)
IF_MIN_3_IN_1_GGA3(x1, x2, x3)  =  IF_MIN_3_IN_1_GGA2(x1, x3)
IF_NOTEQ_2_IN_1_GG3(x1, x2, x3)  =  IF_NOTEQ_2_IN_1_GG1(x3)
REMOVE_3_IN_GGA3(x1, x2, x3)  =  REMOVE_3_IN_GGA2(x1, x2)
MIN1_2_IN_AG2(x1, x2)  =  MIN1_2_IN_AG1(x2)
MIN2_3_IN_GAG3(x1, x2, x3)  =  MIN2_3_IN_GAG2(x1, x3)
IF_REMOVE_3_IN_2_GGA5(x1, x2, x3, x4, x5)  =  IF_REMOVE_3_IN_2_GGA2(x2, x5)
IF_MINSORT_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_MINSORT_2_IN_2_GA2(x2, x4)
IF_MIN2_3_IN_1_GAG5(x1, x2, x3, x4, x5)  =  IF_MIN2_3_IN_1_GAG2(x4, x5)
IF_LE_2_IN_1_GG3(x1, x2, x3)  =  IF_LE_2_IN_1_GG1(x3)
IF_MIN_3_IN_2_GGA3(x1, x2, x3)  =  IF_MIN_3_IN_2_GGA2(x2, x3)
NOTEQ_2_IN_GG2(x1, x2)  =  NOTEQ_2_IN_GG2(x1, x2)
IF_REMOVE_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_REMOVE_3_IN_1_GGA4(x1, x2, x3, x5)
LE_2_IN_GG2(x1, x2)  =  LE_2_IN_GG2(x1, x2)
IF_MINSORT_2_IN_3_GA5(x1, x2, x3, x4, x5)  =  IF_MINSORT_2_IN_3_GA2(x2, x5)
IF_MIN1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_MIN1_2_IN_1_AG1(x4)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

MINSORT_2_IN_GA2(L, ._22(X, L1)) -> IF_MINSORT_2_IN_1_GA4(L, X, L1, min1_2_in_ag2(X, L))
MINSORT_2_IN_GA2(L, ._22(X, L1)) -> MIN1_2_IN_AG2(X, L)
MIN1_2_IN_AG2(M, ._22(X, L)) -> IF_MIN1_2_IN_1_AG4(M, X, L, min2_3_in_gag3(X, M, L))
MIN1_2_IN_AG2(M, ._22(X, L)) -> MIN2_3_IN_GAG3(X, M, L)
MIN2_3_IN_GAG3(X, A, ._22(M, L)) -> IF_MIN2_3_IN_1_GAG5(X, A, M, L, min_3_in_gga3(X, M, B))
MIN2_3_IN_GAG3(X, A, ._22(M, L)) -> MIN_3_IN_GGA3(X, M, B)
MIN_3_IN_GGA3(X, Y, X) -> IF_MIN_3_IN_1_GGA3(X, Y, le_2_in_gg2(X, Y))
MIN_3_IN_GGA3(X, Y, X) -> LE_2_IN_GG2(X, Y)
LE_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LE_2_IN_1_GG3(X, Y, le_2_in_gg2(X, Y))
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
MIN_3_IN_GGA3(X, Y, Y) -> IF_MIN_3_IN_2_GGA3(X, Y, gt_2_in_gg2(X, Y))
MIN_3_IN_GGA3(X, Y, Y) -> GT_2_IN_GG2(X, Y)
GT_2_IN_GG2(s_11(X), s_11(Y)) -> IF_GT_2_IN_1_GG3(X, Y, gt_2_in_gg2(X, Y))
GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)
IF_MIN2_3_IN_1_GAG5(X, A, M, L, min_3_out_gga3(X, M, B)) -> IF_MIN2_3_IN_2_GAG6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
IF_MIN2_3_IN_1_GAG5(X, A, M, L, min_3_out_gga3(X, M, B)) -> MIN2_3_IN_GAG3(B, A, L)
IF_MINSORT_2_IN_1_GA4(L, X, L1, min1_2_out_ag2(X, L)) -> IF_MINSORT_2_IN_2_GA4(L, X, L1, remove_3_in_gga3(X, L, L2))
IF_MINSORT_2_IN_1_GA4(L, X, L1, min1_2_out_ag2(X, L)) -> REMOVE_3_IN_GGA3(X, L, L2)
REMOVE_3_IN_GGA3(N, ._22(M, L), ._22(M, L1)) -> IF_REMOVE_3_IN_1_GGA5(N, M, L, L1, notEq_2_in_gg2(N, M))
REMOVE_3_IN_GGA3(N, ._22(M, L), ._22(M, L1)) -> NOTEQ_2_IN_GG2(N, M)
NOTEQ_2_IN_GG2(s_11(X), s_11(Y)) -> IF_NOTEQ_2_IN_1_GG3(X, Y, notEq_2_in_gg2(X, Y))
NOTEQ_2_IN_GG2(s_11(X), s_11(Y)) -> NOTEQ_2_IN_GG2(X, Y)
IF_REMOVE_3_IN_1_GGA5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> IF_REMOVE_3_IN_2_GGA5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
IF_REMOVE_3_IN_1_GGA5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> REMOVE_3_IN_GGA3(N, L, L1)
IF_MINSORT_2_IN_2_GA4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> IF_MINSORT_2_IN_3_GA5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
IF_MINSORT_2_IN_2_GA4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> MINSORT_2_IN_GA2(L2, L1)

The TRS R consists of the following rules:

minsort_2_in_ga2([]_0, []_0) -> minsort_2_out_ga2([]_0, []_0)
minsort_2_in_ga2(L, ._22(X, L1)) -> if_minsort_2_in_1_ga4(L, X, L1, min1_2_in_ag2(X, L))
min1_2_in_ag2(M, ._22(X, L)) -> if_min1_2_in_1_ag4(M, X, L, min2_3_in_gag3(X, M, L))
min2_3_in_gag3(X, X, []_0) -> min2_3_out_gag3(X, X, []_0)
min2_3_in_gag3(X, A, ._22(M, L)) -> if_min2_3_in_1_gag5(X, A, M, L, min_3_in_gga3(X, M, B))
min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
if_min2_3_in_1_gag5(X, A, M, L, min_3_out_gga3(X, M, B)) -> if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_out_gag3(B, A, L)) -> min2_3_out_gag3(X, A, ._22(M, L))
if_min1_2_in_1_ag4(M, X, L, min2_3_out_gag3(X, M, L)) -> min1_2_out_ag2(M, ._22(X, L))
if_minsort_2_in_1_ga4(L, X, L1, min1_2_out_ag2(X, L)) -> if_minsort_2_in_2_ga4(L, X, L1, remove_3_in_gga3(X, L, L2))
remove_3_in_gga3(N, ._22(N, L), L) -> remove_3_out_gga3(N, ._22(N, L), L)
remove_3_in_gga3(N, ._22(M, L), ._22(M, L1)) -> if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_in_gg2(N, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))
if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> if_remove_3_in_2_gga5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
if_remove_3_in_2_gga5(N, M, L, L1, remove_3_out_gga3(N, L, L1)) -> remove_3_out_gga3(N, ._22(M, L), ._22(M, L1))
if_minsort_2_in_2_ga4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_out_ga2(L2, L1)) -> minsort_2_out_ga2(L, ._22(X, L1))

The argument filtering Pi contains the following mapping:
minsort_2_in_ga2(x1, x2)  =  minsort_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
minsort_2_out_ga2(x1, x2)  =  minsort_2_out_ga1(x2)
if_minsort_2_in_1_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_1_ga2(x1, x4)
min1_2_in_ag2(x1, x2)  =  min1_2_in_ag1(x2)
if_min1_2_in_1_ag4(x1, x2, x3, x4)  =  if_min1_2_in_1_ag1(x4)
min2_3_in_gag3(x1, x2, x3)  =  min2_3_in_gag2(x1, x3)
min2_3_out_gag3(x1, x2, x3)  =  min2_3_out_gag1(x2)
if_min2_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_min2_3_in_1_gag2(x4, x5)
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_min2_3_in_2_gag6(x1, x2, x3, x4, x5, x6)  =  if_min2_3_in_2_gag1(x6)
min1_2_out_ag2(x1, x2)  =  min1_2_out_ag1(x1)
if_minsort_2_in_2_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_2_ga2(x2, x4)
remove_3_in_gga3(x1, x2, x3)  =  remove_3_in_gga2(x1, x2)
remove_3_out_gga3(x1, x2, x3)  =  remove_3_out_gga1(x3)
if_remove_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_1_gga4(x1, x2, x3, x5)
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
if_remove_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_2_gga2(x2, x5)
if_minsort_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_minsort_2_in_3_ga2(x2, x5)
GT_2_IN_GG2(x1, x2)  =  GT_2_IN_GG2(x1, x2)
IF_GT_2_IN_1_GG3(x1, x2, x3)  =  IF_GT_2_IN_1_GG1(x3)
IF_MIN2_3_IN_2_GAG6(x1, x2, x3, x4, x5, x6)  =  IF_MIN2_3_IN_2_GAG1(x6)
IF_MINSORT_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_MINSORT_2_IN_1_GA2(x1, x4)
MINSORT_2_IN_GA2(x1, x2)  =  MINSORT_2_IN_GA1(x1)
MIN_3_IN_GGA3(x1, x2, x3)  =  MIN_3_IN_GGA2(x1, x2)
IF_MIN_3_IN_1_GGA3(x1, x2, x3)  =  IF_MIN_3_IN_1_GGA2(x1, x3)
IF_NOTEQ_2_IN_1_GG3(x1, x2, x3)  =  IF_NOTEQ_2_IN_1_GG1(x3)
REMOVE_3_IN_GGA3(x1, x2, x3)  =  REMOVE_3_IN_GGA2(x1, x2)
MIN1_2_IN_AG2(x1, x2)  =  MIN1_2_IN_AG1(x2)
MIN2_3_IN_GAG3(x1, x2, x3)  =  MIN2_3_IN_GAG2(x1, x3)
IF_REMOVE_3_IN_2_GGA5(x1, x2, x3, x4, x5)  =  IF_REMOVE_3_IN_2_GGA2(x2, x5)
IF_MINSORT_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_MINSORT_2_IN_2_GA2(x2, x4)
IF_MIN2_3_IN_1_GAG5(x1, x2, x3, x4, x5)  =  IF_MIN2_3_IN_1_GAG2(x4, x5)
IF_LE_2_IN_1_GG3(x1, x2, x3)  =  IF_LE_2_IN_1_GG1(x3)
IF_MIN_3_IN_2_GGA3(x1, x2, x3)  =  IF_MIN_3_IN_2_GGA2(x2, x3)
NOTEQ_2_IN_GG2(x1, x2)  =  NOTEQ_2_IN_GG2(x1, x2)
IF_REMOVE_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_REMOVE_3_IN_1_GGA4(x1, x2, x3, x5)
LE_2_IN_GG2(x1, x2)  =  LE_2_IN_GG2(x1, x2)
IF_MINSORT_2_IN_3_GA5(x1, x2, x3, x4, x5)  =  IF_MINSORT_2_IN_3_GA2(x2, x5)
IF_MIN1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_MIN1_2_IN_1_AG1(x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 6 SCCs with 16 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

NOTEQ_2_IN_GG2(s_11(X), s_11(Y)) -> NOTEQ_2_IN_GG2(X, Y)

The TRS R consists of the following rules:

minsort_2_in_ga2([]_0, []_0) -> minsort_2_out_ga2([]_0, []_0)
minsort_2_in_ga2(L, ._22(X, L1)) -> if_minsort_2_in_1_ga4(L, X, L1, min1_2_in_ag2(X, L))
min1_2_in_ag2(M, ._22(X, L)) -> if_min1_2_in_1_ag4(M, X, L, min2_3_in_gag3(X, M, L))
min2_3_in_gag3(X, X, []_0) -> min2_3_out_gag3(X, X, []_0)
min2_3_in_gag3(X, A, ._22(M, L)) -> if_min2_3_in_1_gag5(X, A, M, L, min_3_in_gga3(X, M, B))
min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
if_min2_3_in_1_gag5(X, A, M, L, min_3_out_gga3(X, M, B)) -> if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_out_gag3(B, A, L)) -> min2_3_out_gag3(X, A, ._22(M, L))
if_min1_2_in_1_ag4(M, X, L, min2_3_out_gag3(X, M, L)) -> min1_2_out_ag2(M, ._22(X, L))
if_minsort_2_in_1_ga4(L, X, L1, min1_2_out_ag2(X, L)) -> if_minsort_2_in_2_ga4(L, X, L1, remove_3_in_gga3(X, L, L2))
remove_3_in_gga3(N, ._22(N, L), L) -> remove_3_out_gga3(N, ._22(N, L), L)
remove_3_in_gga3(N, ._22(M, L), ._22(M, L1)) -> if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_in_gg2(N, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))
if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> if_remove_3_in_2_gga5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
if_remove_3_in_2_gga5(N, M, L, L1, remove_3_out_gga3(N, L, L1)) -> remove_3_out_gga3(N, ._22(M, L), ._22(M, L1))
if_minsort_2_in_2_ga4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_out_ga2(L2, L1)) -> minsort_2_out_ga2(L, ._22(X, L1))

The argument filtering Pi contains the following mapping:
minsort_2_in_ga2(x1, x2)  =  minsort_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
minsort_2_out_ga2(x1, x2)  =  minsort_2_out_ga1(x2)
if_minsort_2_in_1_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_1_ga2(x1, x4)
min1_2_in_ag2(x1, x2)  =  min1_2_in_ag1(x2)
if_min1_2_in_1_ag4(x1, x2, x3, x4)  =  if_min1_2_in_1_ag1(x4)
min2_3_in_gag3(x1, x2, x3)  =  min2_3_in_gag2(x1, x3)
min2_3_out_gag3(x1, x2, x3)  =  min2_3_out_gag1(x2)
if_min2_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_min2_3_in_1_gag2(x4, x5)
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_min2_3_in_2_gag6(x1, x2, x3, x4, x5, x6)  =  if_min2_3_in_2_gag1(x6)
min1_2_out_ag2(x1, x2)  =  min1_2_out_ag1(x1)
if_minsort_2_in_2_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_2_ga2(x2, x4)
remove_3_in_gga3(x1, x2, x3)  =  remove_3_in_gga2(x1, x2)
remove_3_out_gga3(x1, x2, x3)  =  remove_3_out_gga1(x3)
if_remove_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_1_gga4(x1, x2, x3, x5)
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
if_remove_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_2_gga2(x2, x5)
if_minsort_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_minsort_2_in_3_ga2(x2, x5)
NOTEQ_2_IN_GG2(x1, x2)  =  NOTEQ_2_IN_GG2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

NOTEQ_2_IN_GG2(s_11(X), s_11(Y)) -> NOTEQ_2_IN_GG2(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

NOTEQ_2_IN_GG2(s_11(X), s_11(Y)) -> NOTEQ_2_IN_GG2(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {NOTEQ_2_IN_GG2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

IF_REMOVE_3_IN_1_GGA5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> REMOVE_3_IN_GGA3(N, L, L1)
REMOVE_3_IN_GGA3(N, ._22(M, L), ._22(M, L1)) -> IF_REMOVE_3_IN_1_GGA5(N, M, L, L1, notEq_2_in_gg2(N, M))

The TRS R consists of the following rules:

minsort_2_in_ga2([]_0, []_0) -> minsort_2_out_ga2([]_0, []_0)
minsort_2_in_ga2(L, ._22(X, L1)) -> if_minsort_2_in_1_ga4(L, X, L1, min1_2_in_ag2(X, L))
min1_2_in_ag2(M, ._22(X, L)) -> if_min1_2_in_1_ag4(M, X, L, min2_3_in_gag3(X, M, L))
min2_3_in_gag3(X, X, []_0) -> min2_3_out_gag3(X, X, []_0)
min2_3_in_gag3(X, A, ._22(M, L)) -> if_min2_3_in_1_gag5(X, A, M, L, min_3_in_gga3(X, M, B))
min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
if_min2_3_in_1_gag5(X, A, M, L, min_3_out_gga3(X, M, B)) -> if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_out_gag3(B, A, L)) -> min2_3_out_gag3(X, A, ._22(M, L))
if_min1_2_in_1_ag4(M, X, L, min2_3_out_gag3(X, M, L)) -> min1_2_out_ag2(M, ._22(X, L))
if_minsort_2_in_1_ga4(L, X, L1, min1_2_out_ag2(X, L)) -> if_minsort_2_in_2_ga4(L, X, L1, remove_3_in_gga3(X, L, L2))
remove_3_in_gga3(N, ._22(N, L), L) -> remove_3_out_gga3(N, ._22(N, L), L)
remove_3_in_gga3(N, ._22(M, L), ._22(M, L1)) -> if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_in_gg2(N, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))
if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> if_remove_3_in_2_gga5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
if_remove_3_in_2_gga5(N, M, L, L1, remove_3_out_gga3(N, L, L1)) -> remove_3_out_gga3(N, ._22(M, L), ._22(M, L1))
if_minsort_2_in_2_ga4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_out_ga2(L2, L1)) -> minsort_2_out_ga2(L, ._22(X, L1))

The argument filtering Pi contains the following mapping:
minsort_2_in_ga2(x1, x2)  =  minsort_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
minsort_2_out_ga2(x1, x2)  =  minsort_2_out_ga1(x2)
if_minsort_2_in_1_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_1_ga2(x1, x4)
min1_2_in_ag2(x1, x2)  =  min1_2_in_ag1(x2)
if_min1_2_in_1_ag4(x1, x2, x3, x4)  =  if_min1_2_in_1_ag1(x4)
min2_3_in_gag3(x1, x2, x3)  =  min2_3_in_gag2(x1, x3)
min2_3_out_gag3(x1, x2, x3)  =  min2_3_out_gag1(x2)
if_min2_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_min2_3_in_1_gag2(x4, x5)
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_min2_3_in_2_gag6(x1, x2, x3, x4, x5, x6)  =  if_min2_3_in_2_gag1(x6)
min1_2_out_ag2(x1, x2)  =  min1_2_out_ag1(x1)
if_minsort_2_in_2_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_2_ga2(x2, x4)
remove_3_in_gga3(x1, x2, x3)  =  remove_3_in_gga2(x1, x2)
remove_3_out_gga3(x1, x2, x3)  =  remove_3_out_gga1(x3)
if_remove_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_1_gga4(x1, x2, x3, x5)
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
if_remove_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_2_gga2(x2, x5)
if_minsort_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_minsort_2_in_3_ga2(x2, x5)
REMOVE_3_IN_GGA3(x1, x2, x3)  =  REMOVE_3_IN_GGA2(x1, x2)
IF_REMOVE_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_REMOVE_3_IN_1_GGA4(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

IF_REMOVE_3_IN_1_GGA5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> REMOVE_3_IN_GGA3(N, L, L1)
REMOVE_3_IN_GGA3(N, ._22(M, L), ._22(M, L1)) -> IF_REMOVE_3_IN_1_GGA5(N, M, L, L1, notEq_2_in_gg2(N, M))

The TRS R consists of the following rules:

notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
REMOVE_3_IN_GGA3(x1, x2, x3)  =  REMOVE_3_IN_GGA2(x1, x2)
IF_REMOVE_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_REMOVE_3_IN_1_GGA4(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

IF_REMOVE_3_IN_1_GGA4(N, M, L, notEq_2_out_gg) -> REMOVE_3_IN_GGA2(N, L)
REMOVE_3_IN_GGA2(N, ._22(M, L)) -> IF_REMOVE_3_IN_1_GGA4(N, M, L, notEq_2_in_gg2(N, M))

The TRS R consists of the following rules:

notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg1(notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg
if_notEq_2_in_1_gg1(notEq_2_out_gg) -> notEq_2_out_gg

The set Q consists of the following terms:

notEq_2_in_gg2(x0, x1)
if_notEq_2_in_1_gg1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {REMOVE_3_IN_GGA2, IF_REMOVE_3_IN_1_GGA4}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)

The TRS R consists of the following rules:

minsort_2_in_ga2([]_0, []_0) -> minsort_2_out_ga2([]_0, []_0)
minsort_2_in_ga2(L, ._22(X, L1)) -> if_minsort_2_in_1_ga4(L, X, L1, min1_2_in_ag2(X, L))
min1_2_in_ag2(M, ._22(X, L)) -> if_min1_2_in_1_ag4(M, X, L, min2_3_in_gag3(X, M, L))
min2_3_in_gag3(X, X, []_0) -> min2_3_out_gag3(X, X, []_0)
min2_3_in_gag3(X, A, ._22(M, L)) -> if_min2_3_in_1_gag5(X, A, M, L, min_3_in_gga3(X, M, B))
min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
if_min2_3_in_1_gag5(X, A, M, L, min_3_out_gga3(X, M, B)) -> if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_out_gag3(B, A, L)) -> min2_3_out_gag3(X, A, ._22(M, L))
if_min1_2_in_1_ag4(M, X, L, min2_3_out_gag3(X, M, L)) -> min1_2_out_ag2(M, ._22(X, L))
if_minsort_2_in_1_ga4(L, X, L1, min1_2_out_ag2(X, L)) -> if_minsort_2_in_2_ga4(L, X, L1, remove_3_in_gga3(X, L, L2))
remove_3_in_gga3(N, ._22(N, L), L) -> remove_3_out_gga3(N, ._22(N, L), L)
remove_3_in_gga3(N, ._22(M, L), ._22(M, L1)) -> if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_in_gg2(N, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))
if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> if_remove_3_in_2_gga5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
if_remove_3_in_2_gga5(N, M, L, L1, remove_3_out_gga3(N, L, L1)) -> remove_3_out_gga3(N, ._22(M, L), ._22(M, L1))
if_minsort_2_in_2_ga4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_out_ga2(L2, L1)) -> minsort_2_out_ga2(L, ._22(X, L1))

The argument filtering Pi contains the following mapping:
minsort_2_in_ga2(x1, x2)  =  minsort_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
minsort_2_out_ga2(x1, x2)  =  minsort_2_out_ga1(x2)
if_minsort_2_in_1_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_1_ga2(x1, x4)
min1_2_in_ag2(x1, x2)  =  min1_2_in_ag1(x2)
if_min1_2_in_1_ag4(x1, x2, x3, x4)  =  if_min1_2_in_1_ag1(x4)
min2_3_in_gag3(x1, x2, x3)  =  min2_3_in_gag2(x1, x3)
min2_3_out_gag3(x1, x2, x3)  =  min2_3_out_gag1(x2)
if_min2_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_min2_3_in_1_gag2(x4, x5)
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_min2_3_in_2_gag6(x1, x2, x3, x4, x5, x6)  =  if_min2_3_in_2_gag1(x6)
min1_2_out_ag2(x1, x2)  =  min1_2_out_ag1(x1)
if_minsort_2_in_2_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_2_ga2(x2, x4)
remove_3_in_gga3(x1, x2, x3)  =  remove_3_in_gga2(x1, x2)
remove_3_out_gga3(x1, x2, x3)  =  remove_3_out_gga1(x3)
if_remove_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_1_gga4(x1, x2, x3, x5)
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
if_remove_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_2_gga2(x2, x5)
if_minsort_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_minsort_2_in_3_ga2(x2, x5)
GT_2_IN_GG2(x1, x2)  =  GT_2_IN_GG2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {GT_2_IN_GG2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)

The TRS R consists of the following rules:

minsort_2_in_ga2([]_0, []_0) -> minsort_2_out_ga2([]_0, []_0)
minsort_2_in_ga2(L, ._22(X, L1)) -> if_minsort_2_in_1_ga4(L, X, L1, min1_2_in_ag2(X, L))
min1_2_in_ag2(M, ._22(X, L)) -> if_min1_2_in_1_ag4(M, X, L, min2_3_in_gag3(X, M, L))
min2_3_in_gag3(X, X, []_0) -> min2_3_out_gag3(X, X, []_0)
min2_3_in_gag3(X, A, ._22(M, L)) -> if_min2_3_in_1_gag5(X, A, M, L, min_3_in_gga3(X, M, B))
min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
if_min2_3_in_1_gag5(X, A, M, L, min_3_out_gga3(X, M, B)) -> if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_out_gag3(B, A, L)) -> min2_3_out_gag3(X, A, ._22(M, L))
if_min1_2_in_1_ag4(M, X, L, min2_3_out_gag3(X, M, L)) -> min1_2_out_ag2(M, ._22(X, L))
if_minsort_2_in_1_ga4(L, X, L1, min1_2_out_ag2(X, L)) -> if_minsort_2_in_2_ga4(L, X, L1, remove_3_in_gga3(X, L, L2))
remove_3_in_gga3(N, ._22(N, L), L) -> remove_3_out_gga3(N, ._22(N, L), L)
remove_3_in_gga3(N, ._22(M, L), ._22(M, L1)) -> if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_in_gg2(N, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))
if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> if_remove_3_in_2_gga5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
if_remove_3_in_2_gga5(N, M, L, L1, remove_3_out_gga3(N, L, L1)) -> remove_3_out_gga3(N, ._22(M, L), ._22(M, L1))
if_minsort_2_in_2_ga4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_out_ga2(L2, L1)) -> minsort_2_out_ga2(L, ._22(X, L1))

The argument filtering Pi contains the following mapping:
minsort_2_in_ga2(x1, x2)  =  minsort_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
minsort_2_out_ga2(x1, x2)  =  minsort_2_out_ga1(x2)
if_minsort_2_in_1_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_1_ga2(x1, x4)
min1_2_in_ag2(x1, x2)  =  min1_2_in_ag1(x2)
if_min1_2_in_1_ag4(x1, x2, x3, x4)  =  if_min1_2_in_1_ag1(x4)
min2_3_in_gag3(x1, x2, x3)  =  min2_3_in_gag2(x1, x3)
min2_3_out_gag3(x1, x2, x3)  =  min2_3_out_gag1(x2)
if_min2_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_min2_3_in_1_gag2(x4, x5)
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_min2_3_in_2_gag6(x1, x2, x3, x4, x5, x6)  =  if_min2_3_in_2_gag1(x6)
min1_2_out_ag2(x1, x2)  =  min1_2_out_ag1(x1)
if_minsort_2_in_2_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_2_ga2(x2, x4)
remove_3_in_gga3(x1, x2, x3)  =  remove_3_in_gga2(x1, x2)
remove_3_out_gga3(x1, x2, x3)  =  remove_3_out_gga1(x3)
if_remove_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_1_gga4(x1, x2, x3, x5)
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
if_remove_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_2_gga2(x2, x5)
if_minsort_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_minsort_2_in_3_ga2(x2, x5)
LE_2_IN_GG2(x1, x2)  =  LE_2_IN_GG2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LE_2_IN_GG2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

IF_MIN2_3_IN_1_GAG5(X, A, M, L, min_3_out_gga3(X, M, B)) -> MIN2_3_IN_GAG3(B, A, L)
MIN2_3_IN_GAG3(X, A, ._22(M, L)) -> IF_MIN2_3_IN_1_GAG5(X, A, M, L, min_3_in_gga3(X, M, B))

The TRS R consists of the following rules:

minsort_2_in_ga2([]_0, []_0) -> minsort_2_out_ga2([]_0, []_0)
minsort_2_in_ga2(L, ._22(X, L1)) -> if_minsort_2_in_1_ga4(L, X, L1, min1_2_in_ag2(X, L))
min1_2_in_ag2(M, ._22(X, L)) -> if_min1_2_in_1_ag4(M, X, L, min2_3_in_gag3(X, M, L))
min2_3_in_gag3(X, X, []_0) -> min2_3_out_gag3(X, X, []_0)
min2_3_in_gag3(X, A, ._22(M, L)) -> if_min2_3_in_1_gag5(X, A, M, L, min_3_in_gga3(X, M, B))
min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
if_min2_3_in_1_gag5(X, A, M, L, min_3_out_gga3(X, M, B)) -> if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_out_gag3(B, A, L)) -> min2_3_out_gag3(X, A, ._22(M, L))
if_min1_2_in_1_ag4(M, X, L, min2_3_out_gag3(X, M, L)) -> min1_2_out_ag2(M, ._22(X, L))
if_minsort_2_in_1_ga4(L, X, L1, min1_2_out_ag2(X, L)) -> if_minsort_2_in_2_ga4(L, X, L1, remove_3_in_gga3(X, L, L2))
remove_3_in_gga3(N, ._22(N, L), L) -> remove_3_out_gga3(N, ._22(N, L), L)
remove_3_in_gga3(N, ._22(M, L), ._22(M, L1)) -> if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_in_gg2(N, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))
if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> if_remove_3_in_2_gga5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
if_remove_3_in_2_gga5(N, M, L, L1, remove_3_out_gga3(N, L, L1)) -> remove_3_out_gga3(N, ._22(M, L), ._22(M, L1))
if_minsort_2_in_2_ga4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_out_ga2(L2, L1)) -> minsort_2_out_ga2(L, ._22(X, L1))

The argument filtering Pi contains the following mapping:
minsort_2_in_ga2(x1, x2)  =  minsort_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
minsort_2_out_ga2(x1, x2)  =  minsort_2_out_ga1(x2)
if_minsort_2_in_1_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_1_ga2(x1, x4)
min1_2_in_ag2(x1, x2)  =  min1_2_in_ag1(x2)
if_min1_2_in_1_ag4(x1, x2, x3, x4)  =  if_min1_2_in_1_ag1(x4)
min2_3_in_gag3(x1, x2, x3)  =  min2_3_in_gag2(x1, x3)
min2_3_out_gag3(x1, x2, x3)  =  min2_3_out_gag1(x2)
if_min2_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_min2_3_in_1_gag2(x4, x5)
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_min2_3_in_2_gag6(x1, x2, x3, x4, x5, x6)  =  if_min2_3_in_2_gag1(x6)
min1_2_out_ag2(x1, x2)  =  min1_2_out_ag1(x1)
if_minsort_2_in_2_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_2_ga2(x2, x4)
remove_3_in_gga3(x1, x2, x3)  =  remove_3_in_gga2(x1, x2)
remove_3_out_gga3(x1, x2, x3)  =  remove_3_out_gga1(x3)
if_remove_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_1_gga4(x1, x2, x3, x5)
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
if_remove_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_2_gga2(x2, x5)
if_minsort_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_minsort_2_in_3_ga2(x2, x5)
MIN2_3_IN_GAG3(x1, x2, x3)  =  MIN2_3_IN_GAG2(x1, x3)
IF_MIN2_3_IN_1_GAG5(x1, x2, x3, x4, x5)  =  IF_MIN2_3_IN_1_GAG2(x4, x5)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

IF_MIN2_3_IN_1_GAG5(X, A, M, L, min_3_out_gga3(X, M, B)) -> MIN2_3_IN_GAG3(B, A, L)
MIN2_3_IN_GAG3(X, A, ._22(M, L)) -> IF_MIN2_3_IN_1_GAG5(X, A, M, L, min_3_in_gga3(X, M, B))

The TRS R consists of the following rules:

min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
MIN2_3_IN_GAG3(x1, x2, x3)  =  MIN2_3_IN_GAG2(x1, x3)
IF_MIN2_3_IN_1_GAG5(x1, x2, x3, x4, x5)  =  IF_MIN2_3_IN_1_GAG2(x4, x5)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

IF_MIN2_3_IN_1_GAG2(L, min_3_out_gga1(B)) -> MIN2_3_IN_GAG2(B, L)
MIN2_3_IN_GAG2(X, ._22(M, L)) -> IF_MIN2_3_IN_1_GAG2(L, min_3_in_gga2(X, M))

The TRS R consists of the following rules:

min_3_in_gga2(X, Y) -> if_min_3_in_1_gga2(X, le_2_in_gg2(X, Y))
min_3_in_gga2(X, Y) -> if_min_3_in_2_gga2(Y, gt_2_in_gg2(X, Y))
if_min_3_in_1_gga2(X, le_2_out_gg) -> min_3_out_gga1(X)
if_min_3_in_2_gga2(Y, gt_2_out_gg) -> min_3_out_gga1(Y)
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg1(le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg1(gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg
if_le_2_in_1_gg1(le_2_out_gg) -> le_2_out_gg
if_gt_2_in_1_gg1(gt_2_out_gg) -> gt_2_out_gg

The set Q consists of the following terms:

min_3_in_gga2(x0, x1)
if_min_3_in_1_gga2(x0, x1)
if_min_3_in_2_gga2(x0, x1)
le_2_in_gg2(x0, x1)
gt_2_in_gg2(x0, x1)
if_le_2_in_1_gg1(x0)
if_gt_2_in_1_gg1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {MIN2_3_IN_GAG2, IF_MIN2_3_IN_1_GAG2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

IF_MINSORT_2_IN_2_GA4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> MINSORT_2_IN_GA2(L2, L1)
MINSORT_2_IN_GA2(L, ._22(X, L1)) -> IF_MINSORT_2_IN_1_GA4(L, X, L1, min1_2_in_ag2(X, L))
IF_MINSORT_2_IN_1_GA4(L, X, L1, min1_2_out_ag2(X, L)) -> IF_MINSORT_2_IN_2_GA4(L, X, L1, remove_3_in_gga3(X, L, L2))

The TRS R consists of the following rules:

minsort_2_in_ga2([]_0, []_0) -> minsort_2_out_ga2([]_0, []_0)
minsort_2_in_ga2(L, ._22(X, L1)) -> if_minsort_2_in_1_ga4(L, X, L1, min1_2_in_ag2(X, L))
min1_2_in_ag2(M, ._22(X, L)) -> if_min1_2_in_1_ag4(M, X, L, min2_3_in_gag3(X, M, L))
min2_3_in_gag3(X, X, []_0) -> min2_3_out_gag3(X, X, []_0)
min2_3_in_gag3(X, A, ._22(M, L)) -> if_min2_3_in_1_gag5(X, A, M, L, min_3_in_gga3(X, M, B))
min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
if_min2_3_in_1_gag5(X, A, M, L, min_3_out_gga3(X, M, B)) -> if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_out_gag3(B, A, L)) -> min2_3_out_gag3(X, A, ._22(M, L))
if_min1_2_in_1_ag4(M, X, L, min2_3_out_gag3(X, M, L)) -> min1_2_out_ag2(M, ._22(X, L))
if_minsort_2_in_1_ga4(L, X, L1, min1_2_out_ag2(X, L)) -> if_minsort_2_in_2_ga4(L, X, L1, remove_3_in_gga3(X, L, L2))
remove_3_in_gga3(N, ._22(N, L), L) -> remove_3_out_gga3(N, ._22(N, L), L)
remove_3_in_gga3(N, ._22(M, L), ._22(M, L1)) -> if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_in_gg2(N, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))
if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> if_remove_3_in_2_gga5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
if_remove_3_in_2_gga5(N, M, L, L1, remove_3_out_gga3(N, L, L1)) -> remove_3_out_gga3(N, ._22(M, L), ._22(M, L1))
if_minsort_2_in_2_ga4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_in_ga2(L2, L1))
if_minsort_2_in_3_ga5(L, X, L1, L2, minsort_2_out_ga2(L2, L1)) -> minsort_2_out_ga2(L, ._22(X, L1))

The argument filtering Pi contains the following mapping:
minsort_2_in_ga2(x1, x2)  =  minsort_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
minsort_2_out_ga2(x1, x2)  =  minsort_2_out_ga1(x2)
if_minsort_2_in_1_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_1_ga2(x1, x4)
min1_2_in_ag2(x1, x2)  =  min1_2_in_ag1(x2)
if_min1_2_in_1_ag4(x1, x2, x3, x4)  =  if_min1_2_in_1_ag1(x4)
min2_3_in_gag3(x1, x2, x3)  =  min2_3_in_gag2(x1, x3)
min2_3_out_gag3(x1, x2, x3)  =  min2_3_out_gag1(x2)
if_min2_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_min2_3_in_1_gag2(x4, x5)
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_min2_3_in_2_gag6(x1, x2, x3, x4, x5, x6)  =  if_min2_3_in_2_gag1(x6)
min1_2_out_ag2(x1, x2)  =  min1_2_out_ag1(x1)
if_minsort_2_in_2_ga4(x1, x2, x3, x4)  =  if_minsort_2_in_2_ga2(x2, x4)
remove_3_in_gga3(x1, x2, x3)  =  remove_3_in_gga2(x1, x2)
remove_3_out_gga3(x1, x2, x3)  =  remove_3_out_gga1(x3)
if_remove_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_1_gga4(x1, x2, x3, x5)
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
if_remove_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_2_gga2(x2, x5)
if_minsort_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_minsort_2_in_3_ga2(x2, x5)
IF_MINSORT_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_MINSORT_2_IN_1_GA2(x1, x4)
MINSORT_2_IN_GA2(x1, x2)  =  MINSORT_2_IN_GA1(x1)
IF_MINSORT_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_MINSORT_2_IN_2_GA2(x2, x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IF_MINSORT_2_IN_2_GA4(L, X, L1, remove_3_out_gga3(X, L, L2)) -> MINSORT_2_IN_GA2(L2, L1)
MINSORT_2_IN_GA2(L, ._22(X, L1)) -> IF_MINSORT_2_IN_1_GA4(L, X, L1, min1_2_in_ag2(X, L))
IF_MINSORT_2_IN_1_GA4(L, X, L1, min1_2_out_ag2(X, L)) -> IF_MINSORT_2_IN_2_GA4(L, X, L1, remove_3_in_gga3(X, L, L2))

The TRS R consists of the following rules:

min1_2_in_ag2(M, ._22(X, L)) -> if_min1_2_in_1_ag4(M, X, L, min2_3_in_gag3(X, M, L))
remove_3_in_gga3(N, ._22(N, L), L) -> remove_3_out_gga3(N, ._22(N, L), L)
remove_3_in_gga3(N, ._22(M, L), ._22(M, L1)) -> if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_in_gg2(N, M))
if_min1_2_in_1_ag4(M, X, L, min2_3_out_gag3(X, M, L)) -> min1_2_out_ag2(M, ._22(X, L))
if_remove_3_in_1_gga5(N, M, L, L1, notEq_2_out_gg2(N, M)) -> if_remove_3_in_2_gga5(N, M, L, L1, remove_3_in_gga3(N, L, L1))
min2_3_in_gag3(X, X, []_0) -> min2_3_out_gag3(X, X, []_0)
min2_3_in_gag3(X, A, ._22(M, L)) -> if_min2_3_in_1_gag5(X, A, M, L, min_3_in_gga3(X, M, B))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg3(X, Y, notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg2(s_11(X), 0_0)
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg2(0_0, s_11(X))
if_remove_3_in_2_gga5(N, M, L, L1, remove_3_out_gga3(N, L, L1)) -> remove_3_out_gga3(N, ._22(M, L), ._22(M, L1))
if_min2_3_in_1_gag5(X, A, M, L, min_3_out_gga3(X, M, B)) -> if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_in_gag3(B, A, L))
if_notEq_2_in_1_gg3(X, Y, notEq_2_out_gg2(X, Y)) -> notEq_2_out_gg2(s_11(X), s_11(Y))
min_3_in_gga3(X, Y, X) -> if_min_3_in_1_gga3(X, Y, le_2_in_gg2(X, Y))
min_3_in_gga3(X, Y, Y) -> if_min_3_in_2_gga3(X, Y, gt_2_in_gg2(X, Y))
if_min2_3_in_2_gag6(X, A, M, L, B, min2_3_out_gag3(B, A, L)) -> min2_3_out_gag3(X, A, ._22(M, L))
if_min_3_in_1_gga3(X, Y, le_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, X)
if_min_3_in_2_gga3(X, Y, gt_2_out_gg2(X, Y)) -> min_3_out_gga3(X, Y, Y)
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg2(0_0, s_11(Y))
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg2(0_0, 0_0)
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg2(s_11(X), 0_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
min1_2_in_ag2(x1, x2)  =  min1_2_in_ag1(x2)
if_min1_2_in_1_ag4(x1, x2, x3, x4)  =  if_min1_2_in_1_ag1(x4)
min2_3_in_gag3(x1, x2, x3)  =  min2_3_in_gag2(x1, x3)
min2_3_out_gag3(x1, x2, x3)  =  min2_3_out_gag1(x2)
if_min2_3_in_1_gag5(x1, x2, x3, x4, x5)  =  if_min2_3_in_1_gag2(x4, x5)
min_3_in_gga3(x1, x2, x3)  =  min_3_in_gga2(x1, x2)
if_min_3_in_1_gga3(x1, x2, x3)  =  if_min_3_in_1_gga2(x1, x3)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
min_3_out_gga3(x1, x2, x3)  =  min_3_out_gga1(x3)
if_min_3_in_2_gga3(x1, x2, x3)  =  if_min_3_in_2_gga2(x2, x3)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_min2_3_in_2_gag6(x1, x2, x3, x4, x5, x6)  =  if_min2_3_in_2_gag1(x6)
min1_2_out_ag2(x1, x2)  =  min1_2_out_ag1(x1)
remove_3_in_gga3(x1, x2, x3)  =  remove_3_in_gga2(x1, x2)
remove_3_out_gga3(x1, x2, x3)  =  remove_3_out_gga1(x3)
if_remove_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_1_gga4(x1, x2, x3, x5)
notEq_2_in_gg2(x1, x2)  =  notEq_2_in_gg2(x1, x2)
if_notEq_2_in_1_gg3(x1, x2, x3)  =  if_notEq_2_in_1_gg1(x3)
notEq_2_out_gg2(x1, x2)  =  notEq_2_out_gg
if_remove_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_remove_3_in_2_gga2(x2, x5)
IF_MINSORT_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_MINSORT_2_IN_1_GA2(x1, x4)
MINSORT_2_IN_GA2(x1, x2)  =  MINSORT_2_IN_GA1(x1)
IF_MINSORT_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_MINSORT_2_IN_2_GA2(x2, x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPPoloProof

Q DP problem:
The TRS P consists of the following rules:

IF_MINSORT_2_IN_2_GA2(X, remove_3_out_gga1(L2)) -> MINSORT_2_IN_GA1(L2)
MINSORT_2_IN_GA1(L) -> IF_MINSORT_2_IN_1_GA2(L, min1_2_in_ag1(L))
IF_MINSORT_2_IN_1_GA2(L, min1_2_out_ag1(X)) -> IF_MINSORT_2_IN_2_GA2(X, remove_3_in_gga2(X, L))

The TRS R consists of the following rules:

min1_2_in_ag1(._22(X, L)) -> if_min1_2_in_1_ag1(min2_3_in_gag2(X, L))
remove_3_in_gga2(N, ._22(N, L)) -> remove_3_out_gga1(L)
remove_3_in_gga2(N, ._22(M, L)) -> if_remove_3_in_1_gga4(N, M, L, notEq_2_in_gg2(N, M))
if_min1_2_in_1_ag1(min2_3_out_gag1(M)) -> min1_2_out_ag1(M)
if_remove_3_in_1_gga4(N, M, L, notEq_2_out_gg) -> if_remove_3_in_2_gga2(M, remove_3_in_gga2(N, L))
min2_3_in_gag2(X, []_0) -> min2_3_out_gag1(X)
min2_3_in_gag2(X, ._22(M, L)) -> if_min2_3_in_1_gag2(L, min_3_in_gga2(X, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg1(notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg
if_remove_3_in_2_gga2(M, remove_3_out_gga1(L1)) -> remove_3_out_gga1(._22(M, L1))
if_min2_3_in_1_gag2(L, min_3_out_gga1(B)) -> if_min2_3_in_2_gag1(min2_3_in_gag2(B, L))
if_notEq_2_in_1_gg1(notEq_2_out_gg) -> notEq_2_out_gg
min_3_in_gga2(X, Y) -> if_min_3_in_1_gga2(X, le_2_in_gg2(X, Y))
min_3_in_gga2(X, Y) -> if_min_3_in_2_gga2(Y, gt_2_in_gg2(X, Y))
if_min2_3_in_2_gag1(min2_3_out_gag1(A)) -> min2_3_out_gag1(A)
if_min_3_in_1_gga2(X, le_2_out_gg) -> min_3_out_gga1(X)
if_min_3_in_2_gga2(Y, gt_2_out_gg) -> min_3_out_gga1(Y)
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg1(le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg1(gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg
if_le_2_in_1_gg1(le_2_out_gg) -> le_2_out_gg
if_gt_2_in_1_gg1(gt_2_out_gg) -> gt_2_out_gg

The set Q consists of the following terms:

min1_2_in_ag1(x0)
remove_3_in_gga2(x0, x1)
if_min1_2_in_1_ag1(x0)
if_remove_3_in_1_gga4(x0, x1, x2, x3)
min2_3_in_gag2(x0, x1)
notEq_2_in_gg2(x0, x1)
if_remove_3_in_2_gga2(x0, x1)
if_min2_3_in_1_gag2(x0, x1)
if_notEq_2_in_1_gg1(x0)
min_3_in_gga2(x0, x1)
if_min2_3_in_2_gag1(x0)
if_min_3_in_1_gga2(x0, x1)
if_min_3_in_2_gga2(x0, x1)
le_2_in_gg2(x0, x1)
gt_2_in_gg2(x0, x1)
if_le_2_in_1_gg1(x0)
if_gt_2_in_1_gg1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {MINSORT_2_IN_GA1, IF_MINSORT_2_IN_2_GA2, IF_MINSORT_2_IN_1_GA2}.
By using a polynomial ordering, the following set of Dependency Pairs of this DP problem can be strictly oriented.

IF_MINSORT_2_IN_2_GA2(X, remove_3_out_gga1(L2)) -> MINSORT_2_IN_GA1(L2)
The remaining Dependency Pairs were at least non-strictly be oriented.

MINSORT_2_IN_GA1(L) -> IF_MINSORT_2_IN_1_GA2(L, min1_2_in_ag1(L))
IF_MINSORT_2_IN_1_GA2(L, min1_2_out_ag1(X)) -> IF_MINSORT_2_IN_2_GA2(X, remove_3_in_gga2(X, L))
With the implicit AFS we had to orient the following set of usable rules non-strictly.

if_remove_3_in_2_gga2(M, remove_3_out_gga1(L1)) -> remove_3_out_gga1(._22(M, L1))
remove_3_in_gga2(N, ._22(M, L)) -> if_remove_3_in_1_gga4(N, M, L, notEq_2_in_gg2(N, M))
remove_3_in_gga2(N, ._22(N, L)) -> remove_3_out_gga1(L)
if_remove_3_in_1_gga4(N, M, L, notEq_2_out_gg) -> if_remove_3_in_2_gga2(M, remove_3_in_gga2(N, L))
Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 0   
POL(gt_2_in_gg2(x1, x2)) = 0   
POL(if_min2_3_in_2_gag1(x1)) = 0   
POL(if_remove_3_in_1_gga4(x1, x2, x3, x4)) = 1 + x3   
POL(min_3_out_gga1(x1)) = 0   
POL(if_min_3_in_1_gga2(x1, x2)) = 0   
POL(MINSORT_2_IN_GA1(x1)) = x1   
POL(min1_2_out_ag1(x1)) = 0   
POL(if_remove_3_in_2_gga2(x1, x2)) = 1 + x2   
POL(min2_3_out_gag1(x1)) = 0   
POL(if_min2_3_in_1_gag2(x1, x2)) = 0   
POL(remove_3_in_gga2(x1, x2)) = x2   
POL(notEq_2_out_gg) = 0   
POL(IF_MINSORT_2_IN_2_GA2(x1, x2)) = x2   
POL(if_gt_2_in_1_gg1(x1)) = 0   
POL(le_2_out_gg) = 0   
POL(remove_3_out_gga1(x1)) = 1 + x1   
POL([]_0) = 0   
POL(if_min1_2_in_1_ag1(x1)) = 0   
POL(if_le_2_in_1_gg1(x1)) = 0   
POL(notEq_2_in_gg2(x1, x2)) = 0   
POL(._22(x1, x2)) = 1 + x2   
POL(min_3_in_gga2(x1, x2)) = 0   
POL(if_notEq_2_in_1_gg1(x1)) = 0   
POL(min1_2_in_ag1(x1)) = 0   
POL(IF_MINSORT_2_IN_1_GA2(x1, x2)) = x1   
POL(le_2_in_gg2(x1, x2)) = 0   
POL(min2_3_in_gag2(x1, x2)) = 0   
POL(s_11(x1)) = 0   
POL(gt_2_out_gg) = 0   
POL(if_min_3_in_2_gga2(x1, x2)) = 0   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPPoloProof
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MINSORT_2_IN_GA1(L) -> IF_MINSORT_2_IN_1_GA2(L, min1_2_in_ag1(L))
IF_MINSORT_2_IN_1_GA2(L, min1_2_out_ag1(X)) -> IF_MINSORT_2_IN_2_GA2(X, remove_3_in_gga2(X, L))

The TRS R consists of the following rules:

min1_2_in_ag1(._22(X, L)) -> if_min1_2_in_1_ag1(min2_3_in_gag2(X, L))
remove_3_in_gga2(N, ._22(N, L)) -> remove_3_out_gga1(L)
remove_3_in_gga2(N, ._22(M, L)) -> if_remove_3_in_1_gga4(N, M, L, notEq_2_in_gg2(N, M))
if_min1_2_in_1_ag1(min2_3_out_gag1(M)) -> min1_2_out_ag1(M)
if_remove_3_in_1_gga4(N, M, L, notEq_2_out_gg) -> if_remove_3_in_2_gga2(M, remove_3_in_gga2(N, L))
min2_3_in_gag2(X, []_0) -> min2_3_out_gag1(X)
min2_3_in_gag2(X, ._22(M, L)) -> if_min2_3_in_1_gag2(L, min_3_in_gga2(X, M))
notEq_2_in_gg2(s_11(X), s_11(Y)) -> if_notEq_2_in_1_gg1(notEq_2_in_gg2(X, Y))
notEq_2_in_gg2(s_11(X), 0_0) -> notEq_2_out_gg
notEq_2_in_gg2(0_0, s_11(X)) -> notEq_2_out_gg
if_remove_3_in_2_gga2(M, remove_3_out_gga1(L1)) -> remove_3_out_gga1(._22(M, L1))
if_min2_3_in_1_gag2(L, min_3_out_gga1(B)) -> if_min2_3_in_2_gag1(min2_3_in_gag2(B, L))
if_notEq_2_in_1_gg1(notEq_2_out_gg) -> notEq_2_out_gg
min_3_in_gga2(X, Y) -> if_min_3_in_1_gga2(X, le_2_in_gg2(X, Y))
min_3_in_gga2(X, Y) -> if_min_3_in_2_gga2(Y, gt_2_in_gg2(X, Y))
if_min2_3_in_2_gag1(min2_3_out_gag1(A)) -> min2_3_out_gag1(A)
if_min_3_in_1_gga2(X, le_2_out_gg) -> min_3_out_gga1(X)
if_min_3_in_2_gga2(Y, gt_2_out_gg) -> min_3_out_gga1(Y)
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg1(le_2_in_gg2(X, Y))
le_2_in_gg2(0_0, s_11(Y)) -> le_2_out_gg
le_2_in_gg2(0_0, 0_0) -> le_2_out_gg
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg1(gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), 0_0) -> gt_2_out_gg
if_le_2_in_1_gg1(le_2_out_gg) -> le_2_out_gg
if_gt_2_in_1_gg1(gt_2_out_gg) -> gt_2_out_gg

The set Q consists of the following terms:

min1_2_in_ag1(x0)
remove_3_in_gga2(x0, x1)
if_min1_2_in_1_ag1(x0)
if_remove_3_in_1_gga4(x0, x1, x2, x3)
min2_3_in_gag2(x0, x1)
notEq_2_in_gg2(x0, x1)
if_remove_3_in_2_gga2(x0, x1)
if_min2_3_in_1_gag2(x0, x1)
if_notEq_2_in_1_gg1(x0)
min_3_in_gga2(x0, x1)
if_min2_3_in_2_gag1(x0)
if_min_3_in_1_gga2(x0, x1)
if_min_3_in_2_gga2(x0, x1)
le_2_in_gg2(x0, x1)
gt_2_in_gg2(x0, x1)
if_le_2_in_1_gg1(x0)
if_gt_2_in_1_gg1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_MINSORT_2_IN_1_GA2, MINSORT_2_IN_GA1, IF_MINSORT_2_IN_2_GA2}.
The approximation of the Dependency Graph contains 0 SCCs with 2 less nodes.