↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
reach4: (b,b,b,b)
member2: (b,b)
member12: (f,b)
delete3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reach_4_in_gggg4(X, Y, E, L) -> if_reach_4_in_1_gggg5(X, Y, E, L, member_2_in_gg2(._22(X, ._22(Y, []_0)), E))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_4_in_1_gggg5(X, Y, E, L, member_2_out_gg2(._22(X, ._22(Y, []_0)), E)) -> reach_4_out_gggg4(X, Y, E, L)
reach_4_in_gggg4(X, Z, E, L) -> if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
delete_3_in_gga3(X, ._22(X, Y), Y) -> delete_3_out_gga3(X, ._22(X, Y), Y)
delete_3_in_gga3(X, ._22(H, T1), ._22(H, T2)) -> if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_in_gga3(X, T1, T2))
if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_out_gga3(X, T1, T2)) -> delete_3_out_gga3(X, ._22(H, T1), ._22(H, T2))
if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_in_gggg4(Y, Z, E, V1))
if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_out_gggg4(Y, Z, E, V1)) -> reach_4_out_gggg4(X, Z, E, L)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
reach_4_in_gggg4(X, Y, E, L) -> if_reach_4_in_1_gggg5(X, Y, E, L, member_2_in_gg2(._22(X, ._22(Y, []_0)), E))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_4_in_1_gggg5(X, Y, E, L, member_2_out_gg2(._22(X, ._22(Y, []_0)), E)) -> reach_4_out_gggg4(X, Y, E, L)
reach_4_in_gggg4(X, Z, E, L) -> if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
delete_3_in_gga3(X, ._22(X, Y), Y) -> delete_3_out_gga3(X, ._22(X, Y), Y)
delete_3_in_gga3(X, ._22(H, T1), ._22(H, T2)) -> if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_in_gga3(X, T1, T2))
if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_out_gga3(X, T1, T2)) -> delete_3_out_gga3(X, ._22(H, T1), ._22(H, T2))
if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_in_gggg4(Y, Z, E, V1))
if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_out_gggg4(Y, Z, E, V1)) -> reach_4_out_gggg4(X, Z, E, L)
REACH_4_IN_GGGG4(X, Y, E, L) -> IF_REACH_4_IN_1_GGGG5(X, Y, E, L, member_2_in_gg2(._22(X, ._22(Y, []_0)), E))
REACH_4_IN_GGGG4(X, Y, E, L) -> MEMBER_2_IN_GG2(._22(X, ._22(Y, []_0)), E)
MEMBER_2_IN_GG2(X, ._22(H, L)) -> IF_MEMBER_2_IN_1_GG4(X, H, L, member_2_in_gg2(X, L))
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
REACH_4_IN_GGGG4(X, Z, E, L) -> IF_REACH_4_IN_2_GGGG5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
REACH_4_IN_GGGG4(X, Z, E, L) -> MEMBER1_2_IN_AG2(._22(X, ._22(Y, []_0)), E)
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> IF_MEMBER1_2_IN_1_AG4(X, H, L, member1_2_in_ag2(X, L))
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
IF_REACH_4_IN_2_GGGG5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> IF_REACH_4_IN_3_GGGG6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
IF_REACH_4_IN_2_GGGG5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> MEMBER_2_IN_GG2(Y, L)
IF_REACH_4_IN_3_GGGG6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> IF_REACH_4_IN_4_GGGG6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
IF_REACH_4_IN_3_GGGG6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> DELETE_3_IN_GGA3(Y, L, V1)
DELETE_3_IN_GGA3(X, ._22(H, T1), ._22(H, T2)) -> IF_DELETE_3_IN_1_GGA5(X, H, T1, T2, delete_3_in_gga3(X, T1, T2))
DELETE_3_IN_GGA3(X, ._22(H, T1), ._22(H, T2)) -> DELETE_3_IN_GGA3(X, T1, T2)
IF_REACH_4_IN_4_GGGG6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> IF_REACH_4_IN_5_GGGG7(X, Z, E, L, Y, V1, reach_4_in_gggg4(Y, Z, E, V1))
IF_REACH_4_IN_4_GGGG6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> REACH_4_IN_GGGG4(Y, Z, E, V1)
reach_4_in_gggg4(X, Y, E, L) -> if_reach_4_in_1_gggg5(X, Y, E, L, member_2_in_gg2(._22(X, ._22(Y, []_0)), E))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_4_in_1_gggg5(X, Y, E, L, member_2_out_gg2(._22(X, ._22(Y, []_0)), E)) -> reach_4_out_gggg4(X, Y, E, L)
reach_4_in_gggg4(X, Z, E, L) -> if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
delete_3_in_gga3(X, ._22(X, Y), Y) -> delete_3_out_gga3(X, ._22(X, Y), Y)
delete_3_in_gga3(X, ._22(H, T1), ._22(H, T2)) -> if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_in_gga3(X, T1, T2))
if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_out_gga3(X, T1, T2)) -> delete_3_out_gga3(X, ._22(H, T1), ._22(H, T2))
if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_in_gggg4(Y, Z, E, V1))
if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_out_gggg4(Y, Z, E, V1)) -> reach_4_out_gggg4(X, Z, E, L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
REACH_4_IN_GGGG4(X, Y, E, L) -> IF_REACH_4_IN_1_GGGG5(X, Y, E, L, member_2_in_gg2(._22(X, ._22(Y, []_0)), E))
REACH_4_IN_GGGG4(X, Y, E, L) -> MEMBER_2_IN_GG2(._22(X, ._22(Y, []_0)), E)
MEMBER_2_IN_GG2(X, ._22(H, L)) -> IF_MEMBER_2_IN_1_GG4(X, H, L, member_2_in_gg2(X, L))
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
REACH_4_IN_GGGG4(X, Z, E, L) -> IF_REACH_4_IN_2_GGGG5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
REACH_4_IN_GGGG4(X, Z, E, L) -> MEMBER1_2_IN_AG2(._22(X, ._22(Y, []_0)), E)
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> IF_MEMBER1_2_IN_1_AG4(X, H, L, member1_2_in_ag2(X, L))
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
IF_REACH_4_IN_2_GGGG5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> IF_REACH_4_IN_3_GGGG6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
IF_REACH_4_IN_2_GGGG5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> MEMBER_2_IN_GG2(Y, L)
IF_REACH_4_IN_3_GGGG6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> IF_REACH_4_IN_4_GGGG6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
IF_REACH_4_IN_3_GGGG6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> DELETE_3_IN_GGA3(Y, L, V1)
DELETE_3_IN_GGA3(X, ._22(H, T1), ._22(H, T2)) -> IF_DELETE_3_IN_1_GGA5(X, H, T1, T2, delete_3_in_gga3(X, T1, T2))
DELETE_3_IN_GGA3(X, ._22(H, T1), ._22(H, T2)) -> DELETE_3_IN_GGA3(X, T1, T2)
IF_REACH_4_IN_4_GGGG6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> IF_REACH_4_IN_5_GGGG7(X, Z, E, L, Y, V1, reach_4_in_gggg4(Y, Z, E, V1))
IF_REACH_4_IN_4_GGGG6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> REACH_4_IN_GGGG4(Y, Z, E, V1)
reach_4_in_gggg4(X, Y, E, L) -> if_reach_4_in_1_gggg5(X, Y, E, L, member_2_in_gg2(._22(X, ._22(Y, []_0)), E))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_4_in_1_gggg5(X, Y, E, L, member_2_out_gg2(._22(X, ._22(Y, []_0)), E)) -> reach_4_out_gggg4(X, Y, E, L)
reach_4_in_gggg4(X, Z, E, L) -> if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
delete_3_in_gga3(X, ._22(X, Y), Y) -> delete_3_out_gga3(X, ._22(X, Y), Y)
delete_3_in_gga3(X, ._22(H, T1), ._22(H, T2)) -> if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_in_gga3(X, T1, T2))
if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_out_gga3(X, T1, T2)) -> delete_3_out_gga3(X, ._22(H, T1), ._22(H, T2))
if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_in_gggg4(Y, Z, E, V1))
if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_out_gggg4(Y, Z, E, V1)) -> reach_4_out_gggg4(X, Z, E, L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
DELETE_3_IN_GGA3(X, ._22(H, T1), ._22(H, T2)) -> DELETE_3_IN_GGA3(X, T1, T2)
reach_4_in_gggg4(X, Y, E, L) -> if_reach_4_in_1_gggg5(X, Y, E, L, member_2_in_gg2(._22(X, ._22(Y, []_0)), E))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_4_in_1_gggg5(X, Y, E, L, member_2_out_gg2(._22(X, ._22(Y, []_0)), E)) -> reach_4_out_gggg4(X, Y, E, L)
reach_4_in_gggg4(X, Z, E, L) -> if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
delete_3_in_gga3(X, ._22(X, Y), Y) -> delete_3_out_gga3(X, ._22(X, Y), Y)
delete_3_in_gga3(X, ._22(H, T1), ._22(H, T2)) -> if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_in_gga3(X, T1, T2))
if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_out_gga3(X, T1, T2)) -> delete_3_out_gga3(X, ._22(H, T1), ._22(H, T2))
if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_in_gggg4(Y, Z, E, V1))
if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_out_gggg4(Y, Z, E, V1)) -> reach_4_out_gggg4(X, Z, E, L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
DELETE_3_IN_GGA3(X, ._22(H, T1), ._22(H, T2)) -> DELETE_3_IN_GGA3(X, T1, T2)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
DELETE_3_IN_GGA2(X, ._22(H, T1)) -> DELETE_3_IN_GGA2(X, T1)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
reach_4_in_gggg4(X, Y, E, L) -> if_reach_4_in_1_gggg5(X, Y, E, L, member_2_in_gg2(._22(X, ._22(Y, []_0)), E))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_4_in_1_gggg5(X, Y, E, L, member_2_out_gg2(._22(X, ._22(Y, []_0)), E)) -> reach_4_out_gggg4(X, Y, E, L)
reach_4_in_gggg4(X, Z, E, L) -> if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
delete_3_in_gga3(X, ._22(X, Y), Y) -> delete_3_out_gga3(X, ._22(X, Y), Y)
delete_3_in_gga3(X, ._22(H, T1), ._22(H, T2)) -> if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_in_gga3(X, T1, T2))
if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_out_gga3(X, T1, T2)) -> delete_3_out_gga3(X, ._22(H, T1), ._22(H, T2))
if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_in_gggg4(Y, Z, E, V1))
if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_out_gggg4(Y, Z, E, V1)) -> reach_4_out_gggg4(X, Z, E, L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
MEMBER1_2_IN_AG1(._22(H, L)) -> MEMBER1_2_IN_AG1(L)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
reach_4_in_gggg4(X, Y, E, L) -> if_reach_4_in_1_gggg5(X, Y, E, L, member_2_in_gg2(._22(X, ._22(Y, []_0)), E))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_4_in_1_gggg5(X, Y, E, L, member_2_out_gg2(._22(X, ._22(Y, []_0)), E)) -> reach_4_out_gggg4(X, Y, E, L)
reach_4_in_gggg4(X, Z, E, L) -> if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
delete_3_in_gga3(X, ._22(X, Y), Y) -> delete_3_out_gga3(X, ._22(X, Y), Y)
delete_3_in_gga3(X, ._22(H, T1), ._22(H, T2)) -> if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_in_gga3(X, T1, T2))
if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_out_gga3(X, T1, T2)) -> delete_3_out_gga3(X, ._22(H, T1), ._22(H, T2))
if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_in_gggg4(Y, Z, E, V1))
if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_out_gggg4(Y, Z, E, V1)) -> reach_4_out_gggg4(X, Z, E, L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_REACH_4_IN_4_GGGG6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> REACH_4_IN_GGGG4(Y, Z, E, V1)
REACH_4_IN_GGGG4(X, Z, E, L) -> IF_REACH_4_IN_2_GGGG5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
IF_REACH_4_IN_3_GGGG6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> IF_REACH_4_IN_4_GGGG6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
IF_REACH_4_IN_2_GGGG5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> IF_REACH_4_IN_3_GGGG6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
reach_4_in_gggg4(X, Y, E, L) -> if_reach_4_in_1_gggg5(X, Y, E, L, member_2_in_gg2(._22(X, ._22(Y, []_0)), E))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_4_in_1_gggg5(X, Y, E, L, member_2_out_gg2(._22(X, ._22(Y, []_0)), E)) -> reach_4_out_gggg4(X, Y, E, L)
reach_4_in_gggg4(X, Z, E, L) -> if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_4_in_2_gggg5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
if_reach_4_in_3_gggg6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
delete_3_in_gga3(X, ._22(X, Y), Y) -> delete_3_out_gga3(X, ._22(X, Y), Y)
delete_3_in_gga3(X, ._22(H, T1), ._22(H, T2)) -> if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_in_gga3(X, T1, T2))
if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_out_gga3(X, T1, T2)) -> delete_3_out_gga3(X, ._22(H, T1), ._22(H, T2))
if_reach_4_in_4_gggg6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_in_gggg4(Y, Z, E, V1))
if_reach_4_in_5_gggg7(X, Z, E, L, Y, V1, reach_4_out_gggg4(Y, Z, E, V1)) -> reach_4_out_gggg4(X, Z, E, L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_REACH_4_IN_4_GGGG6(X, Z, E, L, Y, delete_3_out_gga3(Y, L, V1)) -> REACH_4_IN_GGGG4(Y, Z, E, V1)
REACH_4_IN_GGGG4(X, Z, E, L) -> IF_REACH_4_IN_2_GGGG5(X, Z, E, L, member1_2_in_ag2(._22(X, ._22(Y, []_0)), E))
IF_REACH_4_IN_3_GGGG6(X, Z, E, L, Y, member_2_out_gg2(Y, L)) -> IF_REACH_4_IN_4_GGGG6(X, Z, E, L, Y, delete_3_in_gga3(Y, L, V1))
IF_REACH_4_IN_2_GGGG5(X, Z, E, L, member1_2_out_ag2(._22(X, ._22(Y, []_0)), E)) -> IF_REACH_4_IN_3_GGGG6(X, Z, E, L, Y, member_2_in_gg2(Y, L))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
delete_3_in_gga3(X, ._22(X, Y), Y) -> delete_3_out_gga3(X, ._22(X, Y), Y)
delete_3_in_gga3(X, ._22(H, T1), ._22(H, T2)) -> if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_in_gga3(X, T1, T2))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_delete_3_in_1_gga5(X, H, T1, T2, delete_3_out_gga3(X, T1, T2)) -> delete_3_out_gga3(X, ._22(H, T1), ._22(H, T2))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
IF_REACH_4_IN_4_GGGG4(Z, E, Y, delete_3_out_gga1(V1)) -> REACH_4_IN_GGGG4(Y, Z, E, V1)
REACH_4_IN_GGGG4(X, Z, E, L) -> IF_REACH_4_IN_2_GGGG4(Z, E, L, member1_2_in_ag1(E))
IF_REACH_4_IN_3_GGGG5(Z, E, L, Y, member_2_out_gg) -> IF_REACH_4_IN_4_GGGG4(Z, E, Y, delete_3_in_gga2(Y, L))
IF_REACH_4_IN_2_GGGG4(Z, E, L, member1_2_out_ag1(._22(X, ._22(Y, []_0)))) -> IF_REACH_4_IN_3_GGGG5(Z, E, L, Y, member_2_in_gg2(Y, L))
member1_2_in_ag1(._22(H, L)) -> member1_2_out_ag1(H)
member1_2_in_ag1(._22(H, L)) -> if_member1_2_in_1_ag1(member1_2_in_ag1(L))
delete_3_in_gga2(X, ._22(X, Y)) -> delete_3_out_gga1(Y)
delete_3_in_gga2(X, ._22(H, T1)) -> if_delete_3_in_1_gga2(H, delete_3_in_gga2(X, T1))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg1(member_2_in_gg2(X, L))
if_member1_2_in_1_ag1(member1_2_out_ag1(X)) -> member1_2_out_ag1(X)
if_delete_3_in_1_gga2(H, delete_3_out_gga1(T2)) -> delete_3_out_gga1(._22(H, T2))
if_member_2_in_1_gg1(member_2_out_gg) -> member_2_out_gg
member1_2_in_ag1(x0)
delete_3_in_gga2(x0, x1)
member_2_in_gg2(x0, x1)
if_member1_2_in_1_ag1(x0)
if_delete_3_in_1_gga2(x0, x1)
if_member_2_in_1_gg1(x0)
Order:Polynomial interpretation:
POL(member1_2_out_ag1(x1)) = 1
POL(if_delete_3_in_1_gga2(x1, x2)) = 1 + x2
POL(._22(x1, x2)) = 1 + x2
POL([]_0) = 1
POL(member_2_out_gg) = 1
POL(delete_3_in_gga2(x1, x2)) = x2
POL(delete_3_out_gga1(x1)) = 1 + x1
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules.
if_delete_3_in_1_gga2(H, delete_3_out_gga1(T2)) -> delete_3_out_gga1(._22(H, T2))
delete_3_in_gga2(X, ._22(X, Y)) -> delete_3_out_gga1(Y)
delete_3_in_gga2(X, ._22(H, T1)) -> if_delete_3_in_1_gga2(H, delete_3_in_gga2(X, T1))