↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
reach3: (b,b,b)
member2: (b,b)
member12: (f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
REACH_3_IN_GGG3(X, Y, Edges) -> IF_REACH_3_IN_1_GGG4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
REACH_3_IN_GGG3(X, Y, Edges) -> MEMBER_2_IN_GG2(._22(X, ._22(Y, []_0)), Edges)
MEMBER_2_IN_GG2(X, ._22(H, L)) -> IF_MEMBER_2_IN_1_GG4(X, H, L, member_2_in_gg2(X, L))
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
REACH_3_IN_GGG3(X, Z, Edges) -> IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
REACH_3_IN_GGG3(X, Z, Edges) -> MEMBER1_2_IN_AG2(._22(X, ._22(Y, []_0)), Edges)
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> IF_MEMBER1_2_IN_1_AG4(X, H, L, member1_2_in_ag2(X, L))
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> IF_REACH_3_IN_3_GGG5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> REACH_3_IN_GGG3(Y, Z, Edges)
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
REACH_3_IN_GGG3(X, Y, Edges) -> IF_REACH_3_IN_1_GGG4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
REACH_3_IN_GGG3(X, Y, Edges) -> MEMBER_2_IN_GG2(._22(X, ._22(Y, []_0)), Edges)
MEMBER_2_IN_GG2(X, ._22(H, L)) -> IF_MEMBER_2_IN_1_GG4(X, H, L, member_2_in_gg2(X, L))
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
REACH_3_IN_GGG3(X, Z, Edges) -> IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
REACH_3_IN_GGG3(X, Z, Edges) -> MEMBER1_2_IN_AG2(._22(X, ._22(Y, []_0)), Edges)
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> IF_MEMBER1_2_IN_1_AG4(X, H, L, member1_2_in_ag2(X, L))
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> IF_REACH_3_IN_3_GGG5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> REACH_3_IN_GGG3(Y, Z, Edges)
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
MEMBER1_2_IN_AG1(._22(H, L)) -> MEMBER1_2_IN_AG1(L)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PrologToPiTRSProof
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
REACH_3_IN_GGG3(X, Z, Edges) -> IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> REACH_3_IN_GGG3(Y, Z, Edges)
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
REACH_3_IN_GGG3(X, Z, Edges) -> IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> REACH_3_IN_GGG3(Y, Z, Edges)
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ PrologToPiTRSProof
REACH_3_IN_GGG3(X, Z, Edges) -> IF_REACH_3_IN_2_GGG3(Z, Edges, member1_2_in_ag1(Edges))
IF_REACH_3_IN_2_GGG3(Z, Edges, member1_2_out_ag1(._22(X, ._22(Y, []_0)))) -> REACH_3_IN_GGG3(Y, Z, Edges)
member1_2_in_ag1(._22(H, L)) -> member1_2_out_ag1(H)
member1_2_in_ag1(._22(H, L)) -> if_member1_2_in_1_ag1(member1_2_in_ag1(L))
if_member1_2_in_1_ag1(member1_2_out_ag1(X)) -> member1_2_out_ag1(X)
member1_2_in_ag1(x0)
if_member1_2_in_1_ag1(x0)
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
REACH_3_IN_GGG3(X, Y, Edges) -> IF_REACH_3_IN_1_GGG4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
REACH_3_IN_GGG3(X, Y, Edges) -> MEMBER_2_IN_GG2(._22(X, ._22(Y, []_0)), Edges)
MEMBER_2_IN_GG2(X, ._22(H, L)) -> IF_MEMBER_2_IN_1_GG4(X, H, L, member_2_in_gg2(X, L))
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
REACH_3_IN_GGG3(X, Z, Edges) -> IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
REACH_3_IN_GGG3(X, Z, Edges) -> MEMBER1_2_IN_AG2(._22(X, ._22(Y, []_0)), Edges)
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> IF_MEMBER1_2_IN_1_AG4(X, H, L, member1_2_in_ag2(X, L))
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> IF_REACH_3_IN_3_GGG5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> REACH_3_IN_GGG3(Y, Z, Edges)
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
REACH_3_IN_GGG3(X, Y, Edges) -> IF_REACH_3_IN_1_GGG4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
REACH_3_IN_GGG3(X, Y, Edges) -> MEMBER_2_IN_GG2(._22(X, ._22(Y, []_0)), Edges)
MEMBER_2_IN_GG2(X, ._22(H, L)) -> IF_MEMBER_2_IN_1_GG4(X, H, L, member_2_in_gg2(X, L))
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
REACH_3_IN_GGG3(X, Z, Edges) -> IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
REACH_3_IN_GGG3(X, Z, Edges) -> MEMBER1_2_IN_AG2(._22(X, ._22(Y, []_0)), Edges)
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> IF_MEMBER1_2_IN_1_AG4(X, H, L, member1_2_in_ag2(X, L))
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> IF_REACH_3_IN_3_GGG5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> REACH_3_IN_GGG3(Y, Z, Edges)
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
MEMBER1_2_IN_AG2(X, ._22(H, L)) -> MEMBER1_2_IN_AG2(X, L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
MEMBER_2_IN_GG2(X, ._22(H, L)) -> MEMBER_2_IN_GG2(X, L)
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
REACH_3_IN_GGG3(X, Z, Edges) -> IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
IF_REACH_3_IN_2_GGG4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> REACH_3_IN_GGG3(Y, Z, Edges)
reach_3_in_ggg3(X, Y, Edges) -> if_reach_3_in_1_ggg4(X, Y, Edges, member_2_in_gg2(._22(X, ._22(Y, []_0)), Edges))
member_2_in_gg2(H, ._22(H, L)) -> member_2_out_gg2(H, ._22(H, L))
member_2_in_gg2(X, ._22(H, L)) -> if_member_2_in_1_gg4(X, H, L, member_2_in_gg2(X, L))
if_member_2_in_1_gg4(X, H, L, member_2_out_gg2(X, L)) -> member_2_out_gg2(X, ._22(H, L))
if_reach_3_in_1_ggg4(X, Y, Edges, member_2_out_gg2(._22(X, ._22(Y, []_0)), Edges)) -> reach_3_out_ggg3(X, Y, Edges)
reach_3_in_ggg3(X, Z, Edges) -> if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_in_ag2(._22(X, ._22(Y, []_0)), Edges))
member1_2_in_ag2(H, ._22(H, L)) -> member1_2_out_ag2(H, ._22(H, L))
member1_2_in_ag2(X, ._22(H, L)) -> if_member1_2_in_1_ag4(X, H, L, member1_2_in_ag2(X, L))
if_member1_2_in_1_ag4(X, H, L, member1_2_out_ag2(X, L)) -> member1_2_out_ag2(X, ._22(H, L))
if_reach_3_in_2_ggg4(X, Z, Edges, member1_2_out_ag2(._22(X, ._22(Y, []_0)), Edges)) -> if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_in_ggg3(Y, Z, Edges))
if_reach_3_in_3_ggg5(X, Z, Edges, Y, reach_3_out_ggg3(Y, Z, Edges)) -> reach_3_out_ggg3(X, Z, Edges)