↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
mult3: (b,b,f)
add3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
mult_3_in_gga3(0_0, Y, 0_0) -> mult_3_out_gga3(0_0, Y, 0_0)
mult_3_in_gga3(s_11(X), Y, Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, Z1))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, Z1)) -> if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_in_gga3(Z1, Y, Z))
add_3_in_gga3(0_0, Y, Y) -> add_3_out_gga3(0_0, Y, Y)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_out_gga3(Z1, Y, Z)) -> mult_3_out_gga3(s_11(X), Y, Z)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
mult_3_in_gga3(0_0, Y, 0_0) -> mult_3_out_gga3(0_0, Y, 0_0)
mult_3_in_gga3(s_11(X), Y, Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, Z1))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, Z1)) -> if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_in_gga3(Z1, Y, Z))
add_3_in_gga3(0_0, Y, Y) -> add_3_out_gga3(0_0, Y, Y)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_out_gga3(Z1, Y, Z)) -> mult_3_out_gga3(s_11(X), Y, Z)
MULT_3_IN_GGA3(s_11(X), Y, Z) -> IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_in_gga3(X, Y, Z1))
MULT_3_IN_GGA3(s_11(X), Y, Z) -> MULT_3_IN_GGA3(X, Y, Z1)
IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_out_gga3(X, Y, Z1)) -> IF_MULT_3_IN_2_GGA5(X, Y, Z, Z1, add_3_in_gga3(Z1, Y, Z))
IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_out_gga3(X, Y, Z1)) -> ADD_3_IN_GGA3(Z1, Y, Z)
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_ADD_3_IN_1_GGA4(X, Y, Z, add_3_in_gga3(X, Y, Z))
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
mult_3_in_gga3(0_0, Y, 0_0) -> mult_3_out_gga3(0_0, Y, 0_0)
mult_3_in_gga3(s_11(X), Y, Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, Z1))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, Z1)) -> if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_in_gga3(Z1, Y, Z))
add_3_in_gga3(0_0, Y, Y) -> add_3_out_gga3(0_0, Y, Y)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_out_gga3(Z1, Y, Z)) -> mult_3_out_gga3(s_11(X), Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
MULT_3_IN_GGA3(s_11(X), Y, Z) -> IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_in_gga3(X, Y, Z1))
MULT_3_IN_GGA3(s_11(X), Y, Z) -> MULT_3_IN_GGA3(X, Y, Z1)
IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_out_gga3(X, Y, Z1)) -> IF_MULT_3_IN_2_GGA5(X, Y, Z, Z1, add_3_in_gga3(Z1, Y, Z))
IF_MULT_3_IN_1_GGA4(X, Y, Z, mult_3_out_gga3(X, Y, Z1)) -> ADD_3_IN_GGA3(Z1, Y, Z)
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_ADD_3_IN_1_GGA4(X, Y, Z, add_3_in_gga3(X, Y, Z))
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
mult_3_in_gga3(0_0, Y, 0_0) -> mult_3_out_gga3(0_0, Y, 0_0)
mult_3_in_gga3(s_11(X), Y, Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, Z1))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, Z1)) -> if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_in_gga3(Z1, Y, Z))
add_3_in_gga3(0_0, Y, Y) -> add_3_out_gga3(0_0, Y, Y)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_out_gga3(Z1, Y, Z)) -> mult_3_out_gga3(s_11(X), Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
mult_3_in_gga3(0_0, Y, 0_0) -> mult_3_out_gga3(0_0, Y, 0_0)
mult_3_in_gga3(s_11(X), Y, Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, Z1))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, Z1)) -> if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_in_gga3(Z1, Y, Z))
add_3_in_gga3(0_0, Y, Y) -> add_3_out_gga3(0_0, Y, Y)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_out_gga3(Z1, Y, Z)) -> mult_3_out_gga3(s_11(X), Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
ADD_3_IN_GGA2(s_11(X), Y) -> ADD_3_IN_GGA2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
MULT_3_IN_GGA3(s_11(X), Y, Z) -> MULT_3_IN_GGA3(X, Y, Z1)
mult_3_in_gga3(0_0, Y, 0_0) -> mult_3_out_gga3(0_0, Y, 0_0)
mult_3_in_gga3(s_11(X), Y, Z) -> if_mult_3_in_1_gga4(X, Y, Z, mult_3_in_gga3(X, Y, Z1))
if_mult_3_in_1_gga4(X, Y, Z, mult_3_out_gga3(X, Y, Z1)) -> if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_in_gga3(Z1, Y, Z))
add_3_in_gga3(0_0, Y, Y) -> add_3_out_gga3(0_0, Y, Y)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_mult_3_in_2_gga5(X, Y, Z, Z1, add_3_out_gga3(Z1, Y, Z)) -> mult_3_out_gga3(s_11(X), Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
MULT_3_IN_GGA3(s_11(X), Y, Z) -> MULT_3_IN_GGA3(X, Y, Z1)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
MULT_3_IN_GGA2(s_11(X), Y) -> MULT_3_IN_GGA2(X, Y)
From the DPs we obtained the following set of size-change graphs: