Left Termination of the query pattern p(b) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

p1(b0).
p1(a0) :- p11(X).
p11(b0).
p11(a0) :- p11(X).


With regard to the inferred argument filtering the predicates were used in the following modes:
p1: (b)
p11: (f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


p_1_in_g1(b_0) -> p_1_out_g1(b_0)
p_1_in_g1(a_0) -> if_p_1_in_1_g1(p1_1_in_a1(X))
p1_1_in_a1(b_0) -> p1_1_out_a1(b_0)
p1_1_in_a1(a_0) -> if_p1_1_in_1_a1(p1_1_in_a1(X))
if_p1_1_in_1_a1(p1_1_out_a1(X)) -> p1_1_out_a1(a_0)
if_p_1_in_1_g1(p1_1_out_a1(X)) -> p_1_out_g1(a_0)

The argument filtering Pi contains the following mapping:
p_1_in_g1(x1)  =  p_1_in_g1(x1)
b_0  =  b_0
a_0  =  a_0
p_1_out_g1(x1)  =  p_1_out_g
if_p_1_in_1_g1(x1)  =  if_p_1_in_1_g1(x1)
p1_1_in_a1(x1)  =  p1_1_in_a
p1_1_out_a1(x1)  =  p1_1_out_a1(x1)
if_p1_1_in_1_a1(x1)  =  if_p1_1_in_1_a1(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

p_1_in_g1(b_0) -> p_1_out_g1(b_0)
p_1_in_g1(a_0) -> if_p_1_in_1_g1(p1_1_in_a1(X))
p1_1_in_a1(b_0) -> p1_1_out_a1(b_0)
p1_1_in_a1(a_0) -> if_p1_1_in_1_a1(p1_1_in_a1(X))
if_p1_1_in_1_a1(p1_1_out_a1(X)) -> p1_1_out_a1(a_0)
if_p_1_in_1_g1(p1_1_out_a1(X)) -> p_1_out_g1(a_0)

The argument filtering Pi contains the following mapping:
p_1_in_g1(x1)  =  p_1_in_g1(x1)
b_0  =  b_0
a_0  =  a_0
p_1_out_g1(x1)  =  p_1_out_g
if_p_1_in_1_g1(x1)  =  if_p_1_in_1_g1(x1)
p1_1_in_a1(x1)  =  p1_1_in_a
p1_1_out_a1(x1)  =  p1_1_out_a1(x1)
if_p1_1_in_1_a1(x1)  =  if_p1_1_in_1_a1(x1)


Pi DP problem:
The TRS P consists of the following rules:

P_1_IN_G1(a_0) -> IF_P_1_IN_1_G1(p1_1_in_a1(X))
P_1_IN_G1(a_0) -> P1_1_IN_A1(X)
P1_1_IN_A1(a_0) -> IF_P1_1_IN_1_A1(p1_1_in_a1(X))
P1_1_IN_A1(a_0) -> P1_1_IN_A1(X)

The TRS R consists of the following rules:

p_1_in_g1(b_0) -> p_1_out_g1(b_0)
p_1_in_g1(a_0) -> if_p_1_in_1_g1(p1_1_in_a1(X))
p1_1_in_a1(b_0) -> p1_1_out_a1(b_0)
p1_1_in_a1(a_0) -> if_p1_1_in_1_a1(p1_1_in_a1(X))
if_p1_1_in_1_a1(p1_1_out_a1(X)) -> p1_1_out_a1(a_0)
if_p_1_in_1_g1(p1_1_out_a1(X)) -> p_1_out_g1(a_0)

The argument filtering Pi contains the following mapping:
p_1_in_g1(x1)  =  p_1_in_g1(x1)
b_0  =  b_0
a_0  =  a_0
p_1_out_g1(x1)  =  p_1_out_g
if_p_1_in_1_g1(x1)  =  if_p_1_in_1_g1(x1)
p1_1_in_a1(x1)  =  p1_1_in_a
p1_1_out_a1(x1)  =  p1_1_out_a1(x1)
if_p1_1_in_1_a1(x1)  =  if_p1_1_in_1_a1(x1)
IF_P1_1_IN_1_A1(x1)  =  IF_P1_1_IN_1_A1(x1)
IF_P_1_IN_1_G1(x1)  =  IF_P_1_IN_1_G1(x1)
P1_1_IN_A1(x1)  =  P1_1_IN_A
P_1_IN_G1(x1)  =  P_1_IN_G1(x1)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

P_1_IN_G1(a_0) -> IF_P_1_IN_1_G1(p1_1_in_a1(X))
P_1_IN_G1(a_0) -> P1_1_IN_A1(X)
P1_1_IN_A1(a_0) -> IF_P1_1_IN_1_A1(p1_1_in_a1(X))
P1_1_IN_A1(a_0) -> P1_1_IN_A1(X)

The TRS R consists of the following rules:

p_1_in_g1(b_0) -> p_1_out_g1(b_0)
p_1_in_g1(a_0) -> if_p_1_in_1_g1(p1_1_in_a1(X))
p1_1_in_a1(b_0) -> p1_1_out_a1(b_0)
p1_1_in_a1(a_0) -> if_p1_1_in_1_a1(p1_1_in_a1(X))
if_p1_1_in_1_a1(p1_1_out_a1(X)) -> p1_1_out_a1(a_0)
if_p_1_in_1_g1(p1_1_out_a1(X)) -> p_1_out_g1(a_0)

The argument filtering Pi contains the following mapping:
p_1_in_g1(x1)  =  p_1_in_g1(x1)
b_0  =  b_0
a_0  =  a_0
p_1_out_g1(x1)  =  p_1_out_g
if_p_1_in_1_g1(x1)  =  if_p_1_in_1_g1(x1)
p1_1_in_a1(x1)  =  p1_1_in_a
p1_1_out_a1(x1)  =  p1_1_out_a1(x1)
if_p1_1_in_1_a1(x1)  =  if_p1_1_in_1_a1(x1)
IF_P1_1_IN_1_A1(x1)  =  IF_P1_1_IN_1_A1(x1)
IF_P_1_IN_1_G1(x1)  =  IF_P_1_IN_1_G1(x1)
P1_1_IN_A1(x1)  =  P1_1_IN_A
P_1_IN_G1(x1)  =  P_1_IN_G1(x1)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

P1_1_IN_A1(a_0) -> P1_1_IN_A1(X)

The TRS R consists of the following rules:

p_1_in_g1(b_0) -> p_1_out_g1(b_0)
p_1_in_g1(a_0) -> if_p_1_in_1_g1(p1_1_in_a1(X))
p1_1_in_a1(b_0) -> p1_1_out_a1(b_0)
p1_1_in_a1(a_0) -> if_p1_1_in_1_a1(p1_1_in_a1(X))
if_p1_1_in_1_a1(p1_1_out_a1(X)) -> p1_1_out_a1(a_0)
if_p_1_in_1_g1(p1_1_out_a1(X)) -> p_1_out_g1(a_0)

The argument filtering Pi contains the following mapping:
p_1_in_g1(x1)  =  p_1_in_g1(x1)
b_0  =  b_0
a_0  =  a_0
p_1_out_g1(x1)  =  p_1_out_g
if_p_1_in_1_g1(x1)  =  if_p_1_in_1_g1(x1)
p1_1_in_a1(x1)  =  p1_1_in_a
p1_1_out_a1(x1)  =  p1_1_out_a1(x1)
if_p1_1_in_1_a1(x1)  =  if_p1_1_in_1_a1(x1)
P1_1_IN_A1(x1)  =  P1_1_IN_A

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

P1_1_IN_A1(a_0) -> P1_1_IN_A1(X)

R is empty.
The argument filtering Pi contains the following mapping:
a_0  =  a_0
P1_1_IN_A1(x1)  =  P1_1_IN_A

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

P1_1_IN_A -> P1_1_IN_A

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {P1_1_IN_A}.
With regard to the inferred argument filtering the predicates were used in the following modes:
p1: (b)
p11: (f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

p_1_in_g1(b_0) -> p_1_out_g1(b_0)
p_1_in_g1(a_0) -> if_p_1_in_1_g1(p1_1_in_a1(X))
p1_1_in_a1(b_0) -> p1_1_out_a1(b_0)
p1_1_in_a1(a_0) -> if_p1_1_in_1_a1(p1_1_in_a1(X))
if_p1_1_in_1_a1(p1_1_out_a1(X)) -> p1_1_out_a1(a_0)
if_p_1_in_1_g1(p1_1_out_a1(X)) -> p_1_out_g1(a_0)

The argument filtering Pi contains the following mapping:
p_1_in_g1(x1)  =  p_1_in_g1(x1)
b_0  =  b_0
a_0  =  a_0
p_1_out_g1(x1)  =  p_1_out_g1(x1)
if_p_1_in_1_g1(x1)  =  if_p_1_in_1_g1(x1)
p1_1_in_a1(x1)  =  p1_1_in_a
p1_1_out_a1(x1)  =  p1_1_out_a1(x1)
if_p1_1_in_1_a1(x1)  =  if_p1_1_in_1_a1(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

p_1_in_g1(b_0) -> p_1_out_g1(b_0)
p_1_in_g1(a_0) -> if_p_1_in_1_g1(p1_1_in_a1(X))
p1_1_in_a1(b_0) -> p1_1_out_a1(b_0)
p1_1_in_a1(a_0) -> if_p1_1_in_1_a1(p1_1_in_a1(X))
if_p1_1_in_1_a1(p1_1_out_a1(X)) -> p1_1_out_a1(a_0)
if_p_1_in_1_g1(p1_1_out_a1(X)) -> p_1_out_g1(a_0)

The argument filtering Pi contains the following mapping:
p_1_in_g1(x1)  =  p_1_in_g1(x1)
b_0  =  b_0
a_0  =  a_0
p_1_out_g1(x1)  =  p_1_out_g1(x1)
if_p_1_in_1_g1(x1)  =  if_p_1_in_1_g1(x1)
p1_1_in_a1(x1)  =  p1_1_in_a
p1_1_out_a1(x1)  =  p1_1_out_a1(x1)
if_p1_1_in_1_a1(x1)  =  if_p1_1_in_1_a1(x1)


Pi DP problem:
The TRS P consists of the following rules:

P_1_IN_G1(a_0) -> IF_P_1_IN_1_G1(p1_1_in_a1(X))
P_1_IN_G1(a_0) -> P1_1_IN_A1(X)
P1_1_IN_A1(a_0) -> IF_P1_1_IN_1_A1(p1_1_in_a1(X))
P1_1_IN_A1(a_0) -> P1_1_IN_A1(X)

The TRS R consists of the following rules:

p_1_in_g1(b_0) -> p_1_out_g1(b_0)
p_1_in_g1(a_0) -> if_p_1_in_1_g1(p1_1_in_a1(X))
p1_1_in_a1(b_0) -> p1_1_out_a1(b_0)
p1_1_in_a1(a_0) -> if_p1_1_in_1_a1(p1_1_in_a1(X))
if_p1_1_in_1_a1(p1_1_out_a1(X)) -> p1_1_out_a1(a_0)
if_p_1_in_1_g1(p1_1_out_a1(X)) -> p_1_out_g1(a_0)

The argument filtering Pi contains the following mapping:
p_1_in_g1(x1)  =  p_1_in_g1(x1)
b_0  =  b_0
a_0  =  a_0
p_1_out_g1(x1)  =  p_1_out_g1(x1)
if_p_1_in_1_g1(x1)  =  if_p_1_in_1_g1(x1)
p1_1_in_a1(x1)  =  p1_1_in_a
p1_1_out_a1(x1)  =  p1_1_out_a1(x1)
if_p1_1_in_1_a1(x1)  =  if_p1_1_in_1_a1(x1)
IF_P1_1_IN_1_A1(x1)  =  IF_P1_1_IN_1_A1(x1)
IF_P_1_IN_1_G1(x1)  =  IF_P_1_IN_1_G1(x1)
P1_1_IN_A1(x1)  =  P1_1_IN_A
P_1_IN_G1(x1)  =  P_1_IN_G1(x1)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

P_1_IN_G1(a_0) -> IF_P_1_IN_1_G1(p1_1_in_a1(X))
P_1_IN_G1(a_0) -> P1_1_IN_A1(X)
P1_1_IN_A1(a_0) -> IF_P1_1_IN_1_A1(p1_1_in_a1(X))
P1_1_IN_A1(a_0) -> P1_1_IN_A1(X)

The TRS R consists of the following rules:

p_1_in_g1(b_0) -> p_1_out_g1(b_0)
p_1_in_g1(a_0) -> if_p_1_in_1_g1(p1_1_in_a1(X))
p1_1_in_a1(b_0) -> p1_1_out_a1(b_0)
p1_1_in_a1(a_0) -> if_p1_1_in_1_a1(p1_1_in_a1(X))
if_p1_1_in_1_a1(p1_1_out_a1(X)) -> p1_1_out_a1(a_0)
if_p_1_in_1_g1(p1_1_out_a1(X)) -> p_1_out_g1(a_0)

The argument filtering Pi contains the following mapping:
p_1_in_g1(x1)  =  p_1_in_g1(x1)
b_0  =  b_0
a_0  =  a_0
p_1_out_g1(x1)  =  p_1_out_g1(x1)
if_p_1_in_1_g1(x1)  =  if_p_1_in_1_g1(x1)
p1_1_in_a1(x1)  =  p1_1_in_a
p1_1_out_a1(x1)  =  p1_1_out_a1(x1)
if_p1_1_in_1_a1(x1)  =  if_p1_1_in_1_a1(x1)
IF_P1_1_IN_1_A1(x1)  =  IF_P1_1_IN_1_A1(x1)
IF_P_1_IN_1_G1(x1)  =  IF_P_1_IN_1_G1(x1)
P1_1_IN_A1(x1)  =  P1_1_IN_A
P_1_IN_G1(x1)  =  P_1_IN_G1(x1)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

P1_1_IN_A1(a_0) -> P1_1_IN_A1(X)

The TRS R consists of the following rules:

p_1_in_g1(b_0) -> p_1_out_g1(b_0)
p_1_in_g1(a_0) -> if_p_1_in_1_g1(p1_1_in_a1(X))
p1_1_in_a1(b_0) -> p1_1_out_a1(b_0)
p1_1_in_a1(a_0) -> if_p1_1_in_1_a1(p1_1_in_a1(X))
if_p1_1_in_1_a1(p1_1_out_a1(X)) -> p1_1_out_a1(a_0)
if_p_1_in_1_g1(p1_1_out_a1(X)) -> p_1_out_g1(a_0)

The argument filtering Pi contains the following mapping:
p_1_in_g1(x1)  =  p_1_in_g1(x1)
b_0  =  b_0
a_0  =  a_0
p_1_out_g1(x1)  =  p_1_out_g1(x1)
if_p_1_in_1_g1(x1)  =  if_p_1_in_1_g1(x1)
p1_1_in_a1(x1)  =  p1_1_in_a
p1_1_out_a1(x1)  =  p1_1_out_a1(x1)
if_p1_1_in_1_a1(x1)  =  if_p1_1_in_1_a1(x1)
P1_1_IN_A1(x1)  =  P1_1_IN_A

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

P1_1_IN_A1(a_0) -> P1_1_IN_A1(X)

R is empty.
The argument filtering Pi contains the following mapping:
a_0  =  a_0
P1_1_IN_A1(x1)  =  P1_1_IN_A

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP

Q DP problem:
The TRS P consists of the following rules:

P1_1_IN_A -> P1_1_IN_A

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {P1_1_IN_A}.