Left Termination of the query pattern merge(b,b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

merge3(X, {}0, X).
merge3({}0, X, X).
merge3(.2(A, X), .2(B, Y), .2(A, Z)) :- le2(A, B), merge3(X, .2(B, Y), Z).
merge3(.2(A, X), .2(B, Y), .2(B, Z)) :- gt2(A, B), merge3(.2(A, X), Y, Z).
gt2(s1(X), s1(Y)) :- gt2(X, Y).
gt2(s1(X), zero0).
le2(s1(X), s1(Y)) :- le2(X, Y).
le2(zero0, s1(Y)).
le2(zero0, zero0).


With regard to the inferred argument filtering the predicates were used in the following modes:
merge3: (b,b,f)
le2: (b,b)
gt2: (b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))

The argument filtering Pi contains the following mapping:
merge_3_in_gga3(x1, x2, x3)  =  merge_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
zero_0  =  zero_0
merge_3_out_gga3(x1, x2, x3)  =  merge_3_out_gga1(x3)
if_merge_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_1_gga5(x1, x2, x3, x4, x6)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
if_merge_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_2_gga2(x1, x6)
if_merge_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_3_gga5(x1, x2, x3, x4, x6)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_merge_3_in_4_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_4_gga2(x3, x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))

The argument filtering Pi contains the following mapping:
merge_3_in_gga3(x1, x2, x3)  =  merge_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
zero_0  =  zero_0
merge_3_out_gga3(x1, x2, x3)  =  merge_3_out_gga1(x3)
if_merge_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_1_gga5(x1, x2, x3, x4, x6)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
if_merge_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_2_gga2(x1, x6)
if_merge_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_3_gga5(x1, x2, x3, x4, x6)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_merge_3_in_4_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_4_gga2(x3, x6)


Pi DP problem:
The TRS P consists of the following rules:

MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> LE_2_IN_GG2(A, B)
LE_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LE_2_IN_1_GG3(X, Y, le_2_in_gg2(X, Y))
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> IF_MERGE_3_IN_2_GGA6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(X, ._22(B, Y), Z)
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> GT_2_IN_GG2(A, B)
GT_2_IN_GG2(s_11(X), s_11(Y)) -> IF_GT_2_IN_1_GG3(X, Y, gt_2_in_gg2(X, Y))
GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> IF_MERGE_3_IN_4_GGA6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(._22(A, X), Y, Z)

The TRS R consists of the following rules:

merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))

The argument filtering Pi contains the following mapping:
merge_3_in_gga3(x1, x2, x3)  =  merge_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
zero_0  =  zero_0
merge_3_out_gga3(x1, x2, x3)  =  merge_3_out_gga1(x3)
if_merge_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_1_gga5(x1, x2, x3, x4, x6)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
if_merge_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_2_gga2(x1, x6)
if_merge_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_3_gga5(x1, x2, x3, x4, x6)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_merge_3_in_4_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_4_gga2(x3, x6)
GT_2_IN_GG2(x1, x2)  =  GT_2_IN_GG2(x1, x2)
IF_MERGE_3_IN_2_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_2_GGA2(x1, x6)
MERGE_3_IN_GGA3(x1, x2, x3)  =  MERGE_3_IN_GGA2(x1, x2)
IF_MERGE_3_IN_1_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_1_GGA5(x1, x2, x3, x4, x6)
IF_GT_2_IN_1_GG3(x1, x2, x3)  =  IF_GT_2_IN_1_GG1(x3)
IF_MERGE_3_IN_3_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_3_GGA5(x1, x2, x3, x4, x6)
IF_MERGE_3_IN_4_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_4_GGA2(x3, x6)
LE_2_IN_GG2(x1, x2)  =  LE_2_IN_GG2(x1, x2)
IF_LE_2_IN_1_GG3(x1, x2, x3)  =  IF_LE_2_IN_1_GG1(x3)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> LE_2_IN_GG2(A, B)
LE_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LE_2_IN_1_GG3(X, Y, le_2_in_gg2(X, Y))
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> IF_MERGE_3_IN_2_GGA6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(X, ._22(B, Y), Z)
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> GT_2_IN_GG2(A, B)
GT_2_IN_GG2(s_11(X), s_11(Y)) -> IF_GT_2_IN_1_GG3(X, Y, gt_2_in_gg2(X, Y))
GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> IF_MERGE_3_IN_4_GGA6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(._22(A, X), Y, Z)

The TRS R consists of the following rules:

merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))

The argument filtering Pi contains the following mapping:
merge_3_in_gga3(x1, x2, x3)  =  merge_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
zero_0  =  zero_0
merge_3_out_gga3(x1, x2, x3)  =  merge_3_out_gga1(x3)
if_merge_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_1_gga5(x1, x2, x3, x4, x6)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
if_merge_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_2_gga2(x1, x6)
if_merge_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_3_gga5(x1, x2, x3, x4, x6)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_merge_3_in_4_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_4_gga2(x3, x6)
GT_2_IN_GG2(x1, x2)  =  GT_2_IN_GG2(x1, x2)
IF_MERGE_3_IN_2_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_2_GGA2(x1, x6)
MERGE_3_IN_GGA3(x1, x2, x3)  =  MERGE_3_IN_GGA2(x1, x2)
IF_MERGE_3_IN_1_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_1_GGA5(x1, x2, x3, x4, x6)
IF_GT_2_IN_1_GG3(x1, x2, x3)  =  IF_GT_2_IN_1_GG1(x3)
IF_MERGE_3_IN_3_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_3_GGA5(x1, x2, x3, x4, x6)
IF_MERGE_3_IN_4_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_4_GGA2(x3, x6)
LE_2_IN_GG2(x1, x2)  =  LE_2_IN_GG2(x1, x2)
IF_LE_2_IN_1_GG3(x1, x2, x3)  =  IF_LE_2_IN_1_GG1(x3)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 3 SCCs with 6 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)

The TRS R consists of the following rules:

merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))

The argument filtering Pi contains the following mapping:
merge_3_in_gga3(x1, x2, x3)  =  merge_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
zero_0  =  zero_0
merge_3_out_gga3(x1, x2, x3)  =  merge_3_out_gga1(x3)
if_merge_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_1_gga5(x1, x2, x3, x4, x6)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
if_merge_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_2_gga2(x1, x6)
if_merge_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_3_gga5(x1, x2, x3, x4, x6)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_merge_3_in_4_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_4_gga2(x3, x6)
GT_2_IN_GG2(x1, x2)  =  GT_2_IN_GG2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {GT_2_IN_GG2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)

The TRS R consists of the following rules:

merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))

The argument filtering Pi contains the following mapping:
merge_3_in_gga3(x1, x2, x3)  =  merge_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
zero_0  =  zero_0
merge_3_out_gga3(x1, x2, x3)  =  merge_3_out_gga1(x3)
if_merge_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_1_gga5(x1, x2, x3, x4, x6)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
if_merge_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_2_gga2(x1, x6)
if_merge_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_3_gga5(x1, x2, x3, x4, x6)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_merge_3_in_4_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_4_gga2(x3, x6)
LE_2_IN_GG2(x1, x2)  =  LE_2_IN_GG2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LE_2_IN_GG2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_in_gg2(A, B))
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(X, ._22(B, Y), Z)
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(._22(A, X), Y, Z)

The TRS R consists of the following rules:

merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))

The argument filtering Pi contains the following mapping:
merge_3_in_gga3(x1, x2, x3)  =  merge_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
zero_0  =  zero_0
merge_3_out_gga3(x1, x2, x3)  =  merge_3_out_gga1(x3)
if_merge_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_1_gga5(x1, x2, x3, x4, x6)
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
if_merge_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_2_gga2(x1, x6)
if_merge_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_3_gga5(x1, x2, x3, x4, x6)
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
if_merge_3_in_4_gga6(x1, x2, x3, x4, x5, x6)  =  if_merge_3_in_4_gga2(x3, x6)
MERGE_3_IN_GGA3(x1, x2, x3)  =  MERGE_3_IN_GGA2(x1, x2)
IF_MERGE_3_IN_1_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_1_GGA5(x1, x2, x3, x4, x6)
IF_MERGE_3_IN_3_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_3_GGA5(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_in_gg2(A, B))
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(X, ._22(B, Y), Z)
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(._22(A, X), Y, Z)

The TRS R consists of the following rules:

gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
zero_0  =  zero_0
le_2_in_gg2(x1, x2)  =  le_2_in_gg2(x1, x2)
if_le_2_in_1_gg3(x1, x2, x3)  =  if_le_2_in_1_gg1(x3)
le_2_out_gg2(x1, x2)  =  le_2_out_gg
gt_2_in_gg2(x1, x2)  =  gt_2_in_gg2(x1, x2)
if_gt_2_in_1_gg3(x1, x2, x3)  =  if_gt_2_in_1_gg1(x3)
gt_2_out_gg2(x1, x2)  =  gt_2_out_gg
MERGE_3_IN_GGA3(x1, x2, x3)  =  MERGE_3_IN_GGA2(x1, x2)
IF_MERGE_3_IN_1_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_1_GGA5(x1, x2, x3, x4, x6)
IF_MERGE_3_IN_3_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_MERGE_3_IN_3_GGA5(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPPoloProof

Q DP problem:
The TRS P consists of the following rules:

MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_in_gg2(A, B))
MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_1_GGA5(A, X, B, Y, le_2_in_gg2(A, B))
IF_MERGE_3_IN_1_GGA5(A, X, B, Y, le_2_out_gg) -> MERGE_3_IN_GGA2(X, ._22(B, Y))
IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_out_gg) -> MERGE_3_IN_GGA2(._22(A, X), Y)

The TRS R consists of the following rules:

gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg1(gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg1(le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg
if_gt_2_in_1_gg1(gt_2_out_gg) -> gt_2_out_gg
if_le_2_in_1_gg1(le_2_out_gg) -> le_2_out_gg

The set Q consists of the following terms:

gt_2_in_gg2(x0, x1)
le_2_in_gg2(x0, x1)
if_gt_2_in_1_gg1(x0)
if_le_2_in_1_gg1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_MERGE_3_IN_3_GGA5, MERGE_3_IN_GGA2, IF_MERGE_3_IN_1_GGA5}.
By using a polynomial ordering, the following set of Dependency Pairs of this DP problem can be strictly oriented.

MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_1_GGA5(A, X, B, Y, le_2_in_gg2(A, B))
The remaining Dependency Pairs were at least non-strictly be oriented.

MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_in_gg2(A, B))
IF_MERGE_3_IN_1_GGA5(A, X, B, Y, le_2_out_gg) -> MERGE_3_IN_GGA2(X, ._22(B, Y))
IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_out_gg) -> MERGE_3_IN_GGA2(._22(A, X), Y)
With the implicit AFS there is no usable rule.

Used ordering: POLO with Polynomial interpretation:


POL(gt_2_in_gg2(x1, x2)) = 0   
POL(if_gt_2_in_1_gg1(x1)) = 0   
POL(MERGE_3_IN_GGA2(x1, x2)) = x1   
POL(._22(x1, x2)) = 1 + x2   
POL(zero_0) = 0   
POL(IF_MERGE_3_IN_1_GGA5(x1, x2, x3, x4, x5)) = x2   
POL(le_2_out_gg) = 0   
POL(le_2_in_gg2(x1, x2)) = 0   
POL(s_11(x1)) = 0   
POL(gt_2_out_gg) = 0   
POL(IF_MERGE_3_IN_3_GGA5(x1, x2, x3, x4, x5)) = 1 + x2   
POL(if_le_2_in_1_gg1(x1)) = 0   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPPoloProof
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_in_gg2(A, B))
IF_MERGE_3_IN_1_GGA5(A, X, B, Y, le_2_out_gg) -> MERGE_3_IN_GGA2(X, ._22(B, Y))
IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_out_gg) -> MERGE_3_IN_GGA2(._22(A, X), Y)

The TRS R consists of the following rules:

gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg1(gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg1(le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg
if_gt_2_in_1_gg1(gt_2_out_gg) -> gt_2_out_gg
if_le_2_in_1_gg1(le_2_out_gg) -> le_2_out_gg

The set Q consists of the following terms:

gt_2_in_gg2(x0, x1)
le_2_in_gg2(x0, x1)
if_gt_2_in_1_gg1(x0)
if_le_2_in_1_gg1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_MERGE_3_IN_3_GGA5, MERGE_3_IN_GGA2, IF_MERGE_3_IN_1_GGA5}.
The approximation of the Dependency Graph contains 1 SCC with 1 less node.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPPoloProof
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_in_gg2(A, B))
IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_out_gg) -> MERGE_3_IN_GGA2(._22(A, X), Y)

The TRS R consists of the following rules:

gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg1(gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg1(le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg
if_gt_2_in_1_gg1(gt_2_out_gg) -> gt_2_out_gg
if_le_2_in_1_gg1(le_2_out_gg) -> le_2_out_gg

The set Q consists of the following terms:

gt_2_in_gg2(x0, x1)
le_2_in_gg2(x0, x1)
if_gt_2_in_1_gg1(x0)
if_le_2_in_1_gg1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_MERGE_3_IN_3_GGA5, MERGE_3_IN_GGA2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: