↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
merge3: (b,b,f)
le2: (b,b)
gt2: (b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> LE_2_IN_GG2(A, B)
LE_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LE_2_IN_1_GG3(X, Y, le_2_in_gg2(X, Y))
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> IF_MERGE_3_IN_2_GGA6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(X, ._22(B, Y), Z)
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> GT_2_IN_GG2(A, B)
GT_2_IN_GG2(s_11(X), s_11(Y)) -> IF_GT_2_IN_1_GG3(X, Y, gt_2_in_gg2(X, Y))
GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> IF_MERGE_3_IN_4_GGA6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(._22(A, X), Y, Z)
merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> LE_2_IN_GG2(A, B)
LE_2_IN_GG2(s_11(X), s_11(Y)) -> IF_LE_2_IN_1_GG3(X, Y, le_2_in_gg2(X, Y))
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> IF_MERGE_3_IN_2_GGA6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(X, ._22(B, Y), Z)
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> GT_2_IN_GG2(A, B)
GT_2_IN_GG2(s_11(X), s_11(Y)) -> IF_GT_2_IN_1_GG3(X, Y, gt_2_in_gg2(X, Y))
GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> IF_MERGE_3_IN_4_GGA6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(._22(A, X), Y, Z)
merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)
merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
GT_2_IN_GG2(s_11(X), s_11(Y)) -> GT_2_IN_GG2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LE_2_IN_GG2(s_11(X), s_11(Y)) -> LE_2_IN_GG2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_in_gg2(A, B))
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(X, ._22(B, Y), Z)
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(._22(A, X), Y, Z)
merge_3_in_gga3(X, []_0, X) -> merge_3_out_gga3(X, []_0, X)
merge_3_in_gga3([]_0, X, X) -> merge_3_out_gga3([]_0, X, X)
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_in_gg2(A, B))
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_1_gga6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_in_gga3(X, ._22(B, Y), Z))
merge_3_in_gga3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_merge_3_in_3_gga6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_in_gga3(._22(A, X), Y, Z))
if_merge_3_in_4_gga6(A, X, B, Y, Z, merge_3_out_gga3(._22(A, X), Y, Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(B, Z))
if_merge_3_in_2_gga6(A, X, B, Y, Z, merge_3_out_gga3(X, ._22(B, Y), Z)) -> merge_3_out_gga3(._22(A, X), ._22(B, Y), ._22(A, Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(B, Z)) -> IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_in_gg2(A, B))
MERGE_3_IN_GGA3(._22(A, X), ._22(B, Y), ._22(A, Z)) -> IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_in_gg2(A, B))
IF_MERGE_3_IN_1_GGA6(A, X, B, Y, Z, le_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(X, ._22(B, Y), Z)
IF_MERGE_3_IN_3_GGA6(A, X, B, Y, Z, gt_2_out_gg2(A, B)) -> MERGE_3_IN_GGA3(._22(A, X), Y, Z)
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg3(X, Y, gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg2(s_11(X), zero_0)
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg3(X, Y, le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg2(zero_0, s_11(Y))
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg2(zero_0, zero_0)
if_gt_2_in_1_gg3(X, Y, gt_2_out_gg2(X, Y)) -> gt_2_out_gg2(s_11(X), s_11(Y))
if_le_2_in_1_gg3(X, Y, le_2_out_gg2(X, Y)) -> le_2_out_gg2(s_11(X), s_11(Y))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_in_gg2(A, B))
MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_1_GGA5(A, X, B, Y, le_2_in_gg2(A, B))
IF_MERGE_3_IN_1_GGA5(A, X, B, Y, le_2_out_gg) -> MERGE_3_IN_GGA2(X, ._22(B, Y))
IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_out_gg) -> MERGE_3_IN_GGA2(._22(A, X), Y)
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg1(gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg1(le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg
if_gt_2_in_1_gg1(gt_2_out_gg) -> gt_2_out_gg
if_le_2_in_1_gg1(le_2_out_gg) -> le_2_out_gg
gt_2_in_gg2(x0, x1)
le_2_in_gg2(x0, x1)
if_gt_2_in_1_gg1(x0)
if_le_2_in_1_gg1(x0)
The remaining Dependency Pairs were at least non-strictly be oriented.
MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_1_GGA5(A, X, B, Y, le_2_in_gg2(A, B))
With the implicit AFS there is no usable rule.
MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_in_gg2(A, B))
IF_MERGE_3_IN_1_GGA5(A, X, B, Y, le_2_out_gg) -> MERGE_3_IN_GGA2(X, ._22(B, Y))
IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_out_gg) -> MERGE_3_IN_GGA2(._22(A, X), Y)
Used ordering: POLO with Polynomial interpretation:
POL(gt_2_in_gg2(x1, x2)) = 0
POL(if_gt_2_in_1_gg1(x1)) = 0
POL(MERGE_3_IN_GGA2(x1, x2)) = x1
POL(._22(x1, x2)) = 1 + x2
POL(zero_0) = 0
POL(IF_MERGE_3_IN_1_GGA5(x1, x2, x3, x4, x5)) = x2
POL(le_2_out_gg) = 0
POL(le_2_in_gg2(x1, x2)) = 0
POL(s_11(x1)) = 0
POL(gt_2_out_gg) = 0
POL(IF_MERGE_3_IN_3_GGA5(x1, x2, x3, x4, x5)) = 1 + x2
POL(if_le_2_in_1_gg1(x1)) = 0
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_in_gg2(A, B))
IF_MERGE_3_IN_1_GGA5(A, X, B, Y, le_2_out_gg) -> MERGE_3_IN_GGA2(X, ._22(B, Y))
IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_out_gg) -> MERGE_3_IN_GGA2(._22(A, X), Y)
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg1(gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg1(le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg
if_gt_2_in_1_gg1(gt_2_out_gg) -> gt_2_out_gg
if_le_2_in_1_gg1(le_2_out_gg) -> le_2_out_gg
gt_2_in_gg2(x0, x1)
le_2_in_gg2(x0, x1)
if_gt_2_in_1_gg1(x0)
if_le_2_in_1_gg1(x0)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPSizeChangeProof
MERGE_3_IN_GGA2(._22(A, X), ._22(B, Y)) -> IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_in_gg2(A, B))
IF_MERGE_3_IN_3_GGA5(A, X, B, Y, gt_2_out_gg) -> MERGE_3_IN_GGA2(._22(A, X), Y)
gt_2_in_gg2(s_11(X), s_11(Y)) -> if_gt_2_in_1_gg1(gt_2_in_gg2(X, Y))
gt_2_in_gg2(s_11(X), zero_0) -> gt_2_out_gg
le_2_in_gg2(s_11(X), s_11(Y)) -> if_le_2_in_1_gg1(le_2_in_gg2(X, Y))
le_2_in_gg2(zero_0, s_11(Y)) -> le_2_out_gg
le_2_in_gg2(zero_0, zero_0) -> le_2_out_gg
if_gt_2_in_1_gg1(gt_2_out_gg) -> gt_2_out_gg
if_le_2_in_1_gg1(le_2_out_gg) -> le_2_out_gg
gt_2_in_gg2(x0, x1)
le_2_in_gg2(x0, x1)
if_gt_2_in_1_gg1(x0)
if_le_2_in_1_gg1(x0)
From the DPs we obtained the following set of size-change graphs: