↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
A_0_IN_ -> IF_A_0_IN_1_1(b_0_in_)
A_0_IN_ -> B_0_IN_
B_0_IN_ -> IF_B_0_IN_1_1(c_0_in_)
B_0_IN_ -> C_0_IN_
C_0_IN_ -> IF_C_0_IN_1_1(d_0_in_)
C_0_IN_ -> D_0_IN_
D_0_IN_ -> IF_D_0_IN_1_1(b_0_in_)
D_0_IN_ -> B_0_IN_
A_0_IN_ -> IF_A_0_IN_2_1(e_0_in_)
A_0_IN_ -> E_0_IN_
E_0_IN_ -> IF_E_0_IN_1_1(f_0_in_)
E_0_IN_ -> F_0_IN_
F_0_IN_ -> IF_F_0_IN_1_1(g_0_in_)
F_0_IN_ -> G_0_IN_
G_0_IN_ -> IF_G_0_IN_1_1(e_0_in_)
G_0_IN_ -> E_0_IN_
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
A_0_IN_ -> IF_A_0_IN_1_1(b_0_in_)
A_0_IN_ -> B_0_IN_
B_0_IN_ -> IF_B_0_IN_1_1(c_0_in_)
B_0_IN_ -> C_0_IN_
C_0_IN_ -> IF_C_0_IN_1_1(d_0_in_)
C_0_IN_ -> D_0_IN_
D_0_IN_ -> IF_D_0_IN_1_1(b_0_in_)
D_0_IN_ -> B_0_IN_
A_0_IN_ -> IF_A_0_IN_2_1(e_0_in_)
A_0_IN_ -> E_0_IN_
E_0_IN_ -> IF_E_0_IN_1_1(f_0_in_)
E_0_IN_ -> F_0_IN_
F_0_IN_ -> IF_F_0_IN_1_1(g_0_in_)
F_0_IN_ -> G_0_IN_
G_0_IN_ -> IF_G_0_IN_1_1(e_0_in_)
G_0_IN_ -> E_0_IN_
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
F_0_IN_ -> G_0_IN_
E_0_IN_ -> F_0_IN_
G_0_IN_ -> E_0_IN_
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
F_0_IN_ -> G_0_IN_
E_0_IN_ -> F_0_IN_
G_0_IN_ -> E_0_IN_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ PiDP
↳ PrologToPiTRSProof
F_0_IN_ -> G_0_IN_
E_0_IN_ -> F_0_IN_
G_0_IN_ -> E_0_IN_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
B_0_IN_ -> C_0_IN_
D_0_IN_ -> B_0_IN_
C_0_IN_ -> D_0_IN_
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
B_0_IN_ -> C_0_IN_
D_0_IN_ -> B_0_IN_
C_0_IN_ -> D_0_IN_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ PrologToPiTRSProof
B_0_IN_ -> C_0_IN_
D_0_IN_ -> B_0_IN_
C_0_IN_ -> D_0_IN_
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
A_0_IN_ -> IF_A_0_IN_1_1(b_0_in_)
A_0_IN_ -> B_0_IN_
B_0_IN_ -> IF_B_0_IN_1_1(c_0_in_)
B_0_IN_ -> C_0_IN_
C_0_IN_ -> IF_C_0_IN_1_1(d_0_in_)
C_0_IN_ -> D_0_IN_
D_0_IN_ -> IF_D_0_IN_1_1(b_0_in_)
D_0_IN_ -> B_0_IN_
A_0_IN_ -> IF_A_0_IN_2_1(e_0_in_)
A_0_IN_ -> E_0_IN_
E_0_IN_ -> IF_E_0_IN_1_1(f_0_in_)
E_0_IN_ -> F_0_IN_
F_0_IN_ -> IF_F_0_IN_1_1(g_0_in_)
F_0_IN_ -> G_0_IN_
G_0_IN_ -> IF_G_0_IN_1_1(e_0_in_)
G_0_IN_ -> E_0_IN_
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
A_0_IN_ -> IF_A_0_IN_1_1(b_0_in_)
A_0_IN_ -> B_0_IN_
B_0_IN_ -> IF_B_0_IN_1_1(c_0_in_)
B_0_IN_ -> C_0_IN_
C_0_IN_ -> IF_C_0_IN_1_1(d_0_in_)
C_0_IN_ -> D_0_IN_
D_0_IN_ -> IF_D_0_IN_1_1(b_0_in_)
D_0_IN_ -> B_0_IN_
A_0_IN_ -> IF_A_0_IN_2_1(e_0_in_)
A_0_IN_ -> E_0_IN_
E_0_IN_ -> IF_E_0_IN_1_1(f_0_in_)
E_0_IN_ -> F_0_IN_
F_0_IN_ -> IF_F_0_IN_1_1(g_0_in_)
F_0_IN_ -> G_0_IN_
G_0_IN_ -> IF_G_0_IN_1_1(e_0_in_)
G_0_IN_ -> E_0_IN_
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
F_0_IN_ -> G_0_IN_
E_0_IN_ -> F_0_IN_
G_0_IN_ -> E_0_IN_
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
F_0_IN_ -> G_0_IN_
E_0_IN_ -> F_0_IN_
G_0_IN_ -> E_0_IN_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
B_0_IN_ -> C_0_IN_
D_0_IN_ -> B_0_IN_
C_0_IN_ -> D_0_IN_
a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
B_0_IN_ -> C_0_IN_
D_0_IN_ -> B_0_IN_
C_0_IN_ -> D_0_IN_