Left Termination of the query pattern a() w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

a0 :- b0.
a0 :- e0.
b0 :- c0.
c0 :- d0.
d0 :- b0.
e0 :- f0.
f0 :- g0.
g0 :- e0.


With regard to the inferred argument filtering the predicates were used in the following modes:
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.

Pi DP problem:
The TRS P consists of the following rules:

A_0_IN_ -> IF_A_0_IN_1_1(b_0_in_)
A_0_IN_ -> B_0_IN_
B_0_IN_ -> IF_B_0_IN_1_1(c_0_in_)
B_0_IN_ -> C_0_IN_
C_0_IN_ -> IF_C_0_IN_1_1(d_0_in_)
C_0_IN_ -> D_0_IN_
D_0_IN_ -> IF_D_0_IN_1_1(b_0_in_)
D_0_IN_ -> B_0_IN_
A_0_IN_ -> IF_A_0_IN_2_1(e_0_in_)
A_0_IN_ -> E_0_IN_
E_0_IN_ -> IF_E_0_IN_1_1(f_0_in_)
E_0_IN_ -> F_0_IN_
F_0_IN_ -> IF_F_0_IN_1_1(g_0_in_)
F_0_IN_ -> G_0_IN_
G_0_IN_ -> IF_G_0_IN_1_1(e_0_in_)
G_0_IN_ -> E_0_IN_

The TRS R consists of the following rules:

a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.
We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

A_0_IN_ -> IF_A_0_IN_1_1(b_0_in_)
A_0_IN_ -> B_0_IN_
B_0_IN_ -> IF_B_0_IN_1_1(c_0_in_)
B_0_IN_ -> C_0_IN_
C_0_IN_ -> IF_C_0_IN_1_1(d_0_in_)
C_0_IN_ -> D_0_IN_
D_0_IN_ -> IF_D_0_IN_1_1(b_0_in_)
D_0_IN_ -> B_0_IN_
A_0_IN_ -> IF_A_0_IN_2_1(e_0_in_)
A_0_IN_ -> E_0_IN_
E_0_IN_ -> IF_E_0_IN_1_1(f_0_in_)
E_0_IN_ -> F_0_IN_
F_0_IN_ -> IF_F_0_IN_1_1(g_0_in_)
F_0_IN_ -> G_0_IN_
G_0_IN_ -> IF_G_0_IN_1_1(e_0_in_)
G_0_IN_ -> E_0_IN_

The TRS R consists of the following rules:

a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 10 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

F_0_IN_ -> G_0_IN_
E_0_IN_ -> F_0_IN_
G_0_IN_ -> E_0_IN_

The TRS R consists of the following rules:

a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

F_0_IN_ -> G_0_IN_
E_0_IN_ -> F_0_IN_
G_0_IN_ -> E_0_IN_

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

F_0_IN_ -> G_0_IN_
E_0_IN_ -> F_0_IN_
G_0_IN_ -> E_0_IN_

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {G_0_IN_, F_0_IN_, E_0_IN_}.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

B_0_IN_ -> C_0_IN_
D_0_IN_ -> B_0_IN_
C_0_IN_ -> D_0_IN_

The TRS R consists of the following rules:

a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

B_0_IN_ -> C_0_IN_
D_0_IN_ -> B_0_IN_
C_0_IN_ -> D_0_IN_

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

B_0_IN_ -> C_0_IN_
D_0_IN_ -> B_0_IN_
C_0_IN_ -> D_0_IN_

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {C_0_IN_, B_0_IN_, D_0_IN_}.
With regard to the inferred argument filtering the predicates were used in the following modes:
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.

Pi DP problem:
The TRS P consists of the following rules:

A_0_IN_ -> IF_A_0_IN_1_1(b_0_in_)
A_0_IN_ -> B_0_IN_
B_0_IN_ -> IF_B_0_IN_1_1(c_0_in_)
B_0_IN_ -> C_0_IN_
C_0_IN_ -> IF_C_0_IN_1_1(d_0_in_)
C_0_IN_ -> D_0_IN_
D_0_IN_ -> IF_D_0_IN_1_1(b_0_in_)
D_0_IN_ -> B_0_IN_
A_0_IN_ -> IF_A_0_IN_2_1(e_0_in_)
A_0_IN_ -> E_0_IN_
E_0_IN_ -> IF_E_0_IN_1_1(f_0_in_)
E_0_IN_ -> F_0_IN_
F_0_IN_ -> IF_F_0_IN_1_1(g_0_in_)
F_0_IN_ -> G_0_IN_
G_0_IN_ -> IF_G_0_IN_1_1(e_0_in_)
G_0_IN_ -> E_0_IN_

The TRS R consists of the following rules:

a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.
We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

A_0_IN_ -> IF_A_0_IN_1_1(b_0_in_)
A_0_IN_ -> B_0_IN_
B_0_IN_ -> IF_B_0_IN_1_1(c_0_in_)
B_0_IN_ -> C_0_IN_
C_0_IN_ -> IF_C_0_IN_1_1(d_0_in_)
C_0_IN_ -> D_0_IN_
D_0_IN_ -> IF_D_0_IN_1_1(b_0_in_)
D_0_IN_ -> B_0_IN_
A_0_IN_ -> IF_A_0_IN_2_1(e_0_in_)
A_0_IN_ -> E_0_IN_
E_0_IN_ -> IF_E_0_IN_1_1(f_0_in_)
E_0_IN_ -> F_0_IN_
F_0_IN_ -> IF_F_0_IN_1_1(g_0_in_)
F_0_IN_ -> G_0_IN_
G_0_IN_ -> IF_G_0_IN_1_1(e_0_in_)
G_0_IN_ -> E_0_IN_

The TRS R consists of the following rules:

a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 10 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

F_0_IN_ -> G_0_IN_
E_0_IN_ -> F_0_IN_
G_0_IN_ -> E_0_IN_

The TRS R consists of the following rules:

a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

F_0_IN_ -> G_0_IN_
E_0_IN_ -> F_0_IN_
G_0_IN_ -> E_0_IN_

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

B_0_IN_ -> C_0_IN_
D_0_IN_ -> B_0_IN_
C_0_IN_ -> D_0_IN_

The TRS R consists of the following rules:

a_0_in_ -> if_a_0_in_1_1(b_0_in_)
b_0_in_ -> if_b_0_in_1_1(c_0_in_)
c_0_in_ -> if_c_0_in_1_1(d_0_in_)
d_0_in_ -> if_d_0_in_1_1(b_0_in_)
if_d_0_in_1_1(b_0_out_) -> d_0_out_
if_c_0_in_1_1(d_0_out_) -> c_0_out_
if_b_0_in_1_1(c_0_out_) -> b_0_out_
if_a_0_in_1_1(b_0_out_) -> a_0_out_
a_0_in_ -> if_a_0_in_2_1(e_0_in_)
e_0_in_ -> if_e_0_in_1_1(f_0_in_)
f_0_in_ -> if_f_0_in_1_1(g_0_in_)
g_0_in_ -> if_g_0_in_1_1(e_0_in_)
if_g_0_in_1_1(e_0_out_) -> g_0_out_
if_f_0_in_1_1(g_0_out_) -> f_0_out_
if_e_0_in_1_1(f_0_out_) -> e_0_out_
if_a_0_in_2_1(e_0_out_) -> a_0_out_

Pi is empty.
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP

Pi DP problem:
The TRS P consists of the following rules:

B_0_IN_ -> C_0_IN_
D_0_IN_ -> B_0_IN_
C_0_IN_ -> D_0_IN_

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains