Left Termination of the query pattern perm(b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

append22(parts2({}0, Y), is1(sum1(Y))).
append22(parts2(.2(H, X), Y), is1(sum1(.2(H, Z)))) :- append22(parts2(X, Y), is1(sum1(Z))).
append12(parts2({}0, Y), is1(sum1(Y))).
append12(parts2(.2(H, X), Y), is1(sum1(.2(H, Z)))) :- append12(parts2(X, Y), is1(sum1(Z))).
perm2({}0, {}0).
perm2(L, .2(H, T)) :- append22(parts2(V, .2(H, U)), is1(sum1(L))), append12(parts2(V, U), is1(sum1(W))), perm2(W, T).


With regard to the inferred argument filtering the predicates were used in the following modes:
perm2: (b,f)
append22: (f,b)
append12: (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_2_in_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L))))
append2_2_in_ag2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append2_2_out_ag2(parts_22([]_0, Y), is_11(sum_11(Y)))
append2_2_in_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_in_ag2(parts_22(X, Y), is_11(sum_11(Z))))
if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_out_ag2(parts_22(X, Y), is_11(sum_11(Z)))) -> append2_2_out_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_1_ga4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_in_ga2(parts_22(V, U), is_11(sum_11(W))))
append1_2_in_ga2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append1_2_out_ga2(parts_22([]_0, Y), is_11(sum_11(Y)))
append1_2_in_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_in_ga2(parts_22(X, Y), is_11(sum_11(Z))))
if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_out_ga2(parts_22(X, Y), is_11(sum_11(Z)))) -> append1_2_out_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
parts_22(x1, x2)  =  parts_22(x1, x2)
[]_0  =  []_0
is_11(x1)  =  is_11(x1)
sum_11(x1)  =  sum_11(x1)
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_2_in_ag2(x1, x2)  =  append2_2_in_ag1(x2)
append2_2_out_ag2(x1, x2)  =  append2_2_out_ag1(x1)
if_append2_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_append2_2_in_1_ag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_2_in_ga2(x1, x2)  =  append1_2_in_ga1(x1)
append1_2_out_ga2(x1, x2)  =  append1_2_out_ga1(x2)
if_append1_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_append1_2_in_1_ga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_2_in_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L))))
append2_2_in_ag2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append2_2_out_ag2(parts_22([]_0, Y), is_11(sum_11(Y)))
append2_2_in_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_in_ag2(parts_22(X, Y), is_11(sum_11(Z))))
if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_out_ag2(parts_22(X, Y), is_11(sum_11(Z)))) -> append2_2_out_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_1_ga4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_in_ga2(parts_22(V, U), is_11(sum_11(W))))
append1_2_in_ga2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append1_2_out_ga2(parts_22([]_0, Y), is_11(sum_11(Y)))
append1_2_in_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_in_ga2(parts_22(X, Y), is_11(sum_11(Z))))
if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_out_ga2(parts_22(X, Y), is_11(sum_11(Z)))) -> append1_2_out_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
parts_22(x1, x2)  =  parts_22(x1, x2)
[]_0  =  []_0
is_11(x1)  =  is_11(x1)
sum_11(x1)  =  sum_11(x1)
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_2_in_ag2(x1, x2)  =  append2_2_in_ag1(x2)
append2_2_out_ag2(x1, x2)  =  append2_2_out_ag1(x1)
if_append2_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_append2_2_in_1_ag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_2_in_ga2(x1, x2)  =  append1_2_in_ga1(x1)
append1_2_out_ga2(x1, x2)  =  append1_2_out_ga1(x2)
if_append1_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_append1_2_in_1_ga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)


Pi DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA2(L, ._22(H, T)) -> IF_PERM_2_IN_1_GA4(L, H, T, append2_2_in_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L))))
PERM_2_IN_GA2(L, ._22(H, T)) -> APPEND2_2_IN_AG2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))
APPEND2_2_IN_AG2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> IF_APPEND2_2_IN_1_AG5(H, X, Y, Z, append2_2_in_ag2(parts_22(X, Y), is_11(sum_11(Z))))
APPEND2_2_IN_AG2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> APPEND2_2_IN_AG2(parts_22(X, Y), is_11(sum_11(Z)))
IF_PERM_2_IN_1_GA4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_2_in_ga2(parts_22(V, U), is_11(sum_11(W))))
IF_PERM_2_IN_1_GA4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> APPEND1_2_IN_GA2(parts_22(V, U), is_11(sum_11(W)))
APPEND1_2_IN_GA2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> IF_APPEND1_2_IN_1_GA5(H, X, Y, Z, append1_2_in_ga2(parts_22(X, Y), is_11(sum_11(Z))))
APPEND1_2_IN_GA2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> APPEND1_2_IN_GA2(parts_22(X, Y), is_11(sum_11(Z)))
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> IF_PERM_2_IN_3_GA5(L, H, T, W, perm_2_in_ga2(W, T))
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> PERM_2_IN_GA2(W, T)

The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_2_in_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L))))
append2_2_in_ag2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append2_2_out_ag2(parts_22([]_0, Y), is_11(sum_11(Y)))
append2_2_in_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_in_ag2(parts_22(X, Y), is_11(sum_11(Z))))
if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_out_ag2(parts_22(X, Y), is_11(sum_11(Z)))) -> append2_2_out_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_1_ga4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_in_ga2(parts_22(V, U), is_11(sum_11(W))))
append1_2_in_ga2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append1_2_out_ga2(parts_22([]_0, Y), is_11(sum_11(Y)))
append1_2_in_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_in_ga2(parts_22(X, Y), is_11(sum_11(Z))))
if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_out_ga2(parts_22(X, Y), is_11(sum_11(Z)))) -> append1_2_out_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
parts_22(x1, x2)  =  parts_22(x1, x2)
[]_0  =  []_0
is_11(x1)  =  is_11(x1)
sum_11(x1)  =  sum_11(x1)
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_2_in_ag2(x1, x2)  =  append2_2_in_ag1(x2)
append2_2_out_ag2(x1, x2)  =  append2_2_out_ag1(x1)
if_append2_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_append2_2_in_1_ag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_2_in_ga2(x1, x2)  =  append1_2_in_ga1(x1)
append1_2_out_ga2(x1, x2)  =  append1_2_out_ga1(x2)
if_append1_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_append1_2_in_1_ga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)
APPEND1_2_IN_GA2(x1, x2)  =  APPEND1_2_IN_GA1(x1)
IF_APPEND1_2_IN_1_GA5(x1, x2, x3, x4, x5)  =  IF_APPEND1_2_IN_1_GA2(x1, x5)
IF_APPEND2_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_APPEND2_2_IN_1_AG2(x1, x5)
IF_PERM_2_IN_3_GA5(x1, x2, x3, x4, x5)  =  IF_PERM_2_IN_3_GA2(x2, x5)
APPEND2_2_IN_AG2(x1, x2)  =  APPEND2_2_IN_AG1(x2)
PERM_2_IN_GA2(x1, x2)  =  PERM_2_IN_GA1(x1)
IF_PERM_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_PERM_2_IN_2_GA2(x2, x6)
IF_PERM_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM_2_IN_1_GA1(x4)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA2(L, ._22(H, T)) -> IF_PERM_2_IN_1_GA4(L, H, T, append2_2_in_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L))))
PERM_2_IN_GA2(L, ._22(H, T)) -> APPEND2_2_IN_AG2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))
APPEND2_2_IN_AG2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> IF_APPEND2_2_IN_1_AG5(H, X, Y, Z, append2_2_in_ag2(parts_22(X, Y), is_11(sum_11(Z))))
APPEND2_2_IN_AG2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> APPEND2_2_IN_AG2(parts_22(X, Y), is_11(sum_11(Z)))
IF_PERM_2_IN_1_GA4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_2_in_ga2(parts_22(V, U), is_11(sum_11(W))))
IF_PERM_2_IN_1_GA4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> APPEND1_2_IN_GA2(parts_22(V, U), is_11(sum_11(W)))
APPEND1_2_IN_GA2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> IF_APPEND1_2_IN_1_GA5(H, X, Y, Z, append1_2_in_ga2(parts_22(X, Y), is_11(sum_11(Z))))
APPEND1_2_IN_GA2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> APPEND1_2_IN_GA2(parts_22(X, Y), is_11(sum_11(Z)))
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> IF_PERM_2_IN_3_GA5(L, H, T, W, perm_2_in_ga2(W, T))
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> PERM_2_IN_GA2(W, T)

The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_2_in_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L))))
append2_2_in_ag2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append2_2_out_ag2(parts_22([]_0, Y), is_11(sum_11(Y)))
append2_2_in_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_in_ag2(parts_22(X, Y), is_11(sum_11(Z))))
if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_out_ag2(parts_22(X, Y), is_11(sum_11(Z)))) -> append2_2_out_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_1_ga4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_in_ga2(parts_22(V, U), is_11(sum_11(W))))
append1_2_in_ga2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append1_2_out_ga2(parts_22([]_0, Y), is_11(sum_11(Y)))
append1_2_in_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_in_ga2(parts_22(X, Y), is_11(sum_11(Z))))
if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_out_ga2(parts_22(X, Y), is_11(sum_11(Z)))) -> append1_2_out_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
parts_22(x1, x2)  =  parts_22(x1, x2)
[]_0  =  []_0
is_11(x1)  =  is_11(x1)
sum_11(x1)  =  sum_11(x1)
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_2_in_ag2(x1, x2)  =  append2_2_in_ag1(x2)
append2_2_out_ag2(x1, x2)  =  append2_2_out_ag1(x1)
if_append2_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_append2_2_in_1_ag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_2_in_ga2(x1, x2)  =  append1_2_in_ga1(x1)
append1_2_out_ga2(x1, x2)  =  append1_2_out_ga1(x2)
if_append1_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_append1_2_in_1_ga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)
APPEND1_2_IN_GA2(x1, x2)  =  APPEND1_2_IN_GA1(x1)
IF_APPEND1_2_IN_1_GA5(x1, x2, x3, x4, x5)  =  IF_APPEND1_2_IN_1_GA2(x1, x5)
IF_APPEND2_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_APPEND2_2_IN_1_AG2(x1, x5)
IF_PERM_2_IN_3_GA5(x1, x2, x3, x4, x5)  =  IF_PERM_2_IN_3_GA2(x2, x5)
APPEND2_2_IN_AG2(x1, x2)  =  APPEND2_2_IN_AG1(x2)
PERM_2_IN_GA2(x1, x2)  =  PERM_2_IN_GA1(x1)
IF_PERM_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_PERM_2_IN_2_GA2(x2, x6)
IF_PERM_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM_2_IN_1_GA1(x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 3 SCCs with 5 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND1_2_IN_GA2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> APPEND1_2_IN_GA2(parts_22(X, Y), is_11(sum_11(Z)))

The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_2_in_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L))))
append2_2_in_ag2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append2_2_out_ag2(parts_22([]_0, Y), is_11(sum_11(Y)))
append2_2_in_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_in_ag2(parts_22(X, Y), is_11(sum_11(Z))))
if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_out_ag2(parts_22(X, Y), is_11(sum_11(Z)))) -> append2_2_out_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_1_ga4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_in_ga2(parts_22(V, U), is_11(sum_11(W))))
append1_2_in_ga2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append1_2_out_ga2(parts_22([]_0, Y), is_11(sum_11(Y)))
append1_2_in_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_in_ga2(parts_22(X, Y), is_11(sum_11(Z))))
if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_out_ga2(parts_22(X, Y), is_11(sum_11(Z)))) -> append1_2_out_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
parts_22(x1, x2)  =  parts_22(x1, x2)
[]_0  =  []_0
is_11(x1)  =  is_11(x1)
sum_11(x1)  =  sum_11(x1)
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_2_in_ag2(x1, x2)  =  append2_2_in_ag1(x2)
append2_2_out_ag2(x1, x2)  =  append2_2_out_ag1(x1)
if_append2_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_append2_2_in_1_ag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_2_in_ga2(x1, x2)  =  append1_2_in_ga1(x1)
append1_2_out_ga2(x1, x2)  =  append1_2_out_ga1(x2)
if_append1_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_append1_2_in_1_ga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)
APPEND1_2_IN_GA2(x1, x2)  =  APPEND1_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND1_2_IN_GA2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> APPEND1_2_IN_GA2(parts_22(X, Y), is_11(sum_11(Z)))

R is empty.
The argument filtering Pi contains the following mapping:
parts_22(x1, x2)  =  parts_22(x1, x2)
is_11(x1)  =  is_11(x1)
sum_11(x1)  =  sum_11(x1)
._22(x1, x2)  =  ._22(x1, x2)
APPEND1_2_IN_GA2(x1, x2)  =  APPEND1_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APPEND1_2_IN_GA1(parts_22(._22(H, X), Y)) -> APPEND1_2_IN_GA1(parts_22(X, Y))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APPEND1_2_IN_GA1}.
We used the following order and afs together with the size-change analysis to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
._22(x1, x2)  =  ._21(x2)
parts_22(x1, x2)  =  x1

From the DPs we obtained the following set of size-change graphs:

We oriented the following set of usable rules. none


↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND2_2_IN_AG2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> APPEND2_2_IN_AG2(parts_22(X, Y), is_11(sum_11(Z)))

The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_2_in_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L))))
append2_2_in_ag2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append2_2_out_ag2(parts_22([]_0, Y), is_11(sum_11(Y)))
append2_2_in_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_in_ag2(parts_22(X, Y), is_11(sum_11(Z))))
if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_out_ag2(parts_22(X, Y), is_11(sum_11(Z)))) -> append2_2_out_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_1_ga4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_in_ga2(parts_22(V, U), is_11(sum_11(W))))
append1_2_in_ga2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append1_2_out_ga2(parts_22([]_0, Y), is_11(sum_11(Y)))
append1_2_in_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_in_ga2(parts_22(X, Y), is_11(sum_11(Z))))
if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_out_ga2(parts_22(X, Y), is_11(sum_11(Z)))) -> append1_2_out_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
parts_22(x1, x2)  =  parts_22(x1, x2)
[]_0  =  []_0
is_11(x1)  =  is_11(x1)
sum_11(x1)  =  sum_11(x1)
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_2_in_ag2(x1, x2)  =  append2_2_in_ag1(x2)
append2_2_out_ag2(x1, x2)  =  append2_2_out_ag1(x1)
if_append2_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_append2_2_in_1_ag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_2_in_ga2(x1, x2)  =  append1_2_in_ga1(x1)
append1_2_out_ga2(x1, x2)  =  append1_2_out_ga1(x2)
if_append1_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_append1_2_in_1_ga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)
APPEND2_2_IN_AG2(x1, x2)  =  APPEND2_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND2_2_IN_AG2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> APPEND2_2_IN_AG2(parts_22(X, Y), is_11(sum_11(Z)))

R is empty.
The argument filtering Pi contains the following mapping:
parts_22(x1, x2)  =  parts_22(x1, x2)
is_11(x1)  =  is_11(x1)
sum_11(x1)  =  sum_11(x1)
._22(x1, x2)  =  ._22(x1, x2)
APPEND2_2_IN_AG2(x1, x2)  =  APPEND2_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APPEND2_2_IN_AG1(is_11(sum_11(._22(H, Z)))) -> APPEND2_2_IN_AG1(is_11(sum_11(Z)))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APPEND2_2_IN_AG1}.
We used the following order and afs together with the size-change analysis to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
is_11(x1)  =  x1
sum_11(x1)  =  x1
._22(x1, x2)  =  ._21(x2)

From the DPs we obtained the following set of size-change graphs:

We oriented the following set of usable rules. none


↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA2(L, ._22(H, T)) -> IF_PERM_2_IN_1_GA4(L, H, T, append2_2_in_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L))))
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> PERM_2_IN_GA2(W, T)
IF_PERM_2_IN_1_GA4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_2_in_ga2(parts_22(V, U), is_11(sum_11(W))))

The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_2_in_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L))))
append2_2_in_ag2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append2_2_out_ag2(parts_22([]_0, Y), is_11(sum_11(Y)))
append2_2_in_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_in_ag2(parts_22(X, Y), is_11(sum_11(Z))))
if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_out_ag2(parts_22(X, Y), is_11(sum_11(Z)))) -> append2_2_out_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_1_ga4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_in_ga2(parts_22(V, U), is_11(sum_11(W))))
append1_2_in_ga2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append1_2_out_ga2(parts_22([]_0, Y), is_11(sum_11(Y)))
append1_2_in_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_in_ga2(parts_22(X, Y), is_11(sum_11(Z))))
if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_out_ga2(parts_22(X, Y), is_11(sum_11(Z)))) -> append1_2_out_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
parts_22(x1, x2)  =  parts_22(x1, x2)
[]_0  =  []_0
is_11(x1)  =  is_11(x1)
sum_11(x1)  =  sum_11(x1)
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_2_in_ag2(x1, x2)  =  append2_2_in_ag1(x2)
append2_2_out_ag2(x1, x2)  =  append2_2_out_ag1(x1)
if_append2_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_append2_2_in_1_ag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_2_in_ga2(x1, x2)  =  append1_2_in_ga1(x1)
append1_2_out_ga2(x1, x2)  =  append1_2_out_ga1(x2)
if_append1_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_append1_2_in_1_ga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)
PERM_2_IN_GA2(x1, x2)  =  PERM_2_IN_GA1(x1)
IF_PERM_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_PERM_2_IN_2_GA2(x2, x6)
IF_PERM_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM_2_IN_1_GA1(x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA2(L, ._22(H, T)) -> IF_PERM_2_IN_1_GA4(L, H, T, append2_2_in_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L))))
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_2_out_ga2(parts_22(V, U), is_11(sum_11(W)))) -> PERM_2_IN_GA2(W, T)
IF_PERM_2_IN_1_GA4(L, H, T, append2_2_out_ag2(parts_22(V, ._22(H, U)), is_11(sum_11(L)))) -> IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_2_in_ga2(parts_22(V, U), is_11(sum_11(W))))

The TRS R consists of the following rules:

append2_2_in_ag2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append2_2_out_ag2(parts_22([]_0, Y), is_11(sum_11(Y)))
append2_2_in_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_in_ag2(parts_22(X, Y), is_11(sum_11(Z))))
append1_2_in_ga2(parts_22([]_0, Y), is_11(sum_11(Y))) -> append1_2_out_ga2(parts_22([]_0, Y), is_11(sum_11(Y)))
append1_2_in_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z)))) -> if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_in_ga2(parts_22(X, Y), is_11(sum_11(Z))))
if_append2_2_in_1_ag5(H, X, Y, Z, append2_2_out_ag2(parts_22(X, Y), is_11(sum_11(Z)))) -> append2_2_out_ag2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))
if_append1_2_in_1_ga5(H, X, Y, Z, append1_2_out_ga2(parts_22(X, Y), is_11(sum_11(Z)))) -> append1_2_out_ga2(parts_22(._22(H, X), Y), is_11(sum_11(._22(H, Z))))

The argument filtering Pi contains the following mapping:
parts_22(x1, x2)  =  parts_22(x1, x2)
[]_0  =  []_0
is_11(x1)  =  is_11(x1)
sum_11(x1)  =  sum_11(x1)
._22(x1, x2)  =  ._22(x1, x2)
append2_2_in_ag2(x1, x2)  =  append2_2_in_ag1(x2)
append2_2_out_ag2(x1, x2)  =  append2_2_out_ag1(x1)
if_append2_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_append2_2_in_1_ag2(x1, x5)
append1_2_in_ga2(x1, x2)  =  append1_2_in_ga1(x1)
append1_2_out_ga2(x1, x2)  =  append1_2_out_ga1(x2)
if_append1_2_in_1_ga5(x1, x2, x3, x4, x5)  =  if_append1_2_in_1_ga2(x1, x5)
PERM_2_IN_GA2(x1, x2)  =  PERM_2_IN_GA1(x1)
IF_PERM_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_PERM_2_IN_2_GA2(x2, x6)
IF_PERM_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM_2_IN_1_GA1(x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPPoloProof

Q DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA1(L) -> IF_PERM_2_IN_1_GA1(append2_2_in_ag1(is_11(sum_11(L))))
IF_PERM_2_IN_2_GA2(H, append1_2_out_ga1(is_11(sum_11(W)))) -> PERM_2_IN_GA1(W)
IF_PERM_2_IN_1_GA1(append2_2_out_ag1(parts_22(V, ._22(H, U)))) -> IF_PERM_2_IN_2_GA2(H, append1_2_in_ga1(parts_22(V, U)))

The TRS R consists of the following rules:

append2_2_in_ag1(is_11(sum_11(Y))) -> append2_2_out_ag1(parts_22([]_0, Y))
append2_2_in_ag1(is_11(sum_11(._22(H, Z)))) -> if_append2_2_in_1_ag2(H, append2_2_in_ag1(is_11(sum_11(Z))))
append1_2_in_ga1(parts_22([]_0, Y)) -> append1_2_out_ga1(is_11(sum_11(Y)))
append1_2_in_ga1(parts_22(._22(H, X), Y)) -> if_append1_2_in_1_ga2(H, append1_2_in_ga1(parts_22(X, Y)))
if_append2_2_in_1_ag2(H, append2_2_out_ag1(parts_22(X, Y))) -> append2_2_out_ag1(parts_22(._22(H, X), Y))
if_append1_2_in_1_ga2(H, append1_2_out_ga1(is_11(sum_11(Z)))) -> append1_2_out_ga1(is_11(sum_11(._22(H, Z))))

The set Q consists of the following terms:

append2_2_in_ag1(x0)
append1_2_in_ga1(x0)
if_append2_2_in_1_ag2(x0, x1)
if_append1_2_in_1_ga2(x0, x1)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_PERM_2_IN_1_GA1, PERM_2_IN_GA1, IF_PERM_2_IN_2_GA2}.
By using a polynomial ordering, the following set of Dependency Pairs of this DP problem can be strictly oriented.

IF_PERM_2_IN_1_GA1(append2_2_out_ag1(parts_22(V, ._22(H, U)))) -> IF_PERM_2_IN_2_GA2(H, append1_2_in_ga1(parts_22(V, U)))
The remaining Dependency Pairs were at least non-strictly be oriented.

PERM_2_IN_GA1(L) -> IF_PERM_2_IN_1_GA1(append2_2_in_ag1(is_11(sum_11(L))))
IF_PERM_2_IN_2_GA2(H, append1_2_out_ga1(is_11(sum_11(W)))) -> PERM_2_IN_GA1(W)
With the implicit AFS we had to orient the following set of usable rules non-strictly.

append1_2_in_ga1(parts_22(._22(H, X), Y)) -> if_append1_2_in_1_ga2(H, append1_2_in_ga1(parts_22(X, Y)))
if_append1_2_in_1_ga2(H, append1_2_out_ga1(is_11(sum_11(Z)))) -> append1_2_out_ga1(is_11(sum_11(._22(H, Z))))
append2_2_in_ag1(is_11(sum_11(._22(H, Z)))) -> if_append2_2_in_1_ag2(H, append2_2_in_ag1(is_11(sum_11(Z))))
if_append2_2_in_1_ag2(H, append2_2_out_ag1(parts_22(X, Y))) -> append2_2_out_ag1(parts_22(._22(H, X), Y))
append2_2_in_ag1(is_11(sum_11(Y))) -> append2_2_out_ag1(parts_22([]_0, Y))
append1_2_in_ga1(parts_22([]_0, Y)) -> append1_2_out_ga1(is_11(sum_11(Y)))
Used ordering: POLO with Polynomial interpretation:

POL(if_append1_2_in_1_ga2(x1, x2)) = 1 + x2   
POL(if_append2_2_in_1_ag2(x1, x2)) = 1 + x2   
POL(is_11(x1)) = x1   
POL(append2_2_out_ag1(x1)) = x1   
POL(IF_PERM_2_IN_1_GA1(x1)) = x1   
POL(parts_22(x1, x2)) = x1 + x2   
POL(append1_2_in_ga1(x1)) = x1   
POL([]_0) = 0   
POL(append1_2_out_ga1(x1)) = x1   
POL(._22(x1, x2)) = 1 + x2   
POL(sum_11(x1)) = x1   
POL(IF_PERM_2_IN_2_GA2(x1, x2)) = x2   
POL(append2_2_in_ag1(x1)) = x1   
POL(PERM_2_IN_GA1(x1)) = x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPPoloProof
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA1(L) -> IF_PERM_2_IN_1_GA1(append2_2_in_ag1(is_11(sum_11(L))))
IF_PERM_2_IN_2_GA2(H, append1_2_out_ga1(is_11(sum_11(W)))) -> PERM_2_IN_GA1(W)

The TRS R consists of the following rules:

append2_2_in_ag1(is_11(sum_11(Y))) -> append2_2_out_ag1(parts_22([]_0, Y))
append2_2_in_ag1(is_11(sum_11(._22(H, Z)))) -> if_append2_2_in_1_ag2(H, append2_2_in_ag1(is_11(sum_11(Z))))
append1_2_in_ga1(parts_22([]_0, Y)) -> append1_2_out_ga1(is_11(sum_11(Y)))
append1_2_in_ga1(parts_22(._22(H, X), Y)) -> if_append1_2_in_1_ga2(H, append1_2_in_ga1(parts_22(X, Y)))
if_append2_2_in_1_ag2(H, append2_2_out_ag1(parts_22(X, Y))) -> append2_2_out_ag1(parts_22(._22(H, X), Y))
if_append1_2_in_1_ga2(H, append1_2_out_ga1(is_11(sum_11(Z)))) -> append1_2_out_ga1(is_11(sum_11(._22(H, Z))))

The set Q consists of the following terms:

append2_2_in_ag1(x0)
append1_2_in_ga1(x0)
if_append2_2_in_1_ag2(x0, x1)
if_append1_2_in_1_ga2(x0, x1)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_PERM_2_IN_1_GA1, PERM_2_IN_GA1, IF_PERM_2_IN_2_GA2}.
The approximation of the Dependency Graph contains 0 SCCs with 2 less nodes.