Left Termination of the query pattern perm(b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

perm2({}0, {}0).
perm2(L, .2(H, T)) :- append23(V, .2(H, U), L), append13(V, U, W), perm2(W, T).
append13({}0, L, L).
append13(.2(H, L1), L2, .2(H, L3)) :- append13(L1, L2, L3).
append23({}0, L, L).
append23(.2(H, L1), L2, .2(H, L3)) :- append23(L1, L2, L3).


With regard to the inferred argument filtering the predicates were used in the following modes:
perm2: (b,f)
append23: (f,f,b)
append13: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_3_in_aag3(V, ._22(H, U), L))
append2_3_in_aag3([]_0, L, L) -> append2_3_out_aag3([]_0, L, L)
append2_3_in_aag3(._22(H, L1), L2, ._22(H, L3)) -> if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_in_aag3(L1, L2, L3))
if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_out_aag3(L1, L2, L3)) -> append2_3_out_aag3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_1_ga4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_in_gga3(V, U, W))
append1_3_in_gga3([]_0, L, L) -> append1_3_out_gga3([]_0, L, L)
append1_3_in_gga3(._22(H, L1), L2, ._22(H, L3)) -> if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_in_gga3(L1, L2, L3))
if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_out_gga3(L1, L2, L3)) -> append1_3_out_gga3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_3_in_aag3(x1, x2, x3)  =  append2_3_in_aag1(x3)
append2_3_out_aag3(x1, x2, x3)  =  append2_3_out_aag2(x1, x2)
if_append2_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append2_3_in_1_aag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_3_in_gga3(x1, x2, x3)  =  append1_3_in_gga2(x1, x2)
append1_3_out_gga3(x1, x2, x3)  =  append1_3_out_gga1(x3)
if_append1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append1_3_in_1_gga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_3_in_aag3(V, ._22(H, U), L))
append2_3_in_aag3([]_0, L, L) -> append2_3_out_aag3([]_0, L, L)
append2_3_in_aag3(._22(H, L1), L2, ._22(H, L3)) -> if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_in_aag3(L1, L2, L3))
if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_out_aag3(L1, L2, L3)) -> append2_3_out_aag3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_1_ga4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_in_gga3(V, U, W))
append1_3_in_gga3([]_0, L, L) -> append1_3_out_gga3([]_0, L, L)
append1_3_in_gga3(._22(H, L1), L2, ._22(H, L3)) -> if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_in_gga3(L1, L2, L3))
if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_out_gga3(L1, L2, L3)) -> append1_3_out_gga3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_3_in_aag3(x1, x2, x3)  =  append2_3_in_aag1(x3)
append2_3_out_aag3(x1, x2, x3)  =  append2_3_out_aag2(x1, x2)
if_append2_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append2_3_in_1_aag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_3_in_gga3(x1, x2, x3)  =  append1_3_in_gga2(x1, x2)
append1_3_out_gga3(x1, x2, x3)  =  append1_3_out_gga1(x3)
if_append1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append1_3_in_1_gga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)


Pi DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA2(L, ._22(H, T)) -> IF_PERM_2_IN_1_GA4(L, H, T, append2_3_in_aag3(V, ._22(H, U), L))
PERM_2_IN_GA2(L, ._22(H, T)) -> APPEND2_3_IN_AAG3(V, ._22(H, U), L)
APPEND2_3_IN_AAG3(._22(H, L1), L2, ._22(H, L3)) -> IF_APPEND2_3_IN_1_AAG5(H, L1, L2, L3, append2_3_in_aag3(L1, L2, L3))
APPEND2_3_IN_AAG3(._22(H, L1), L2, ._22(H, L3)) -> APPEND2_3_IN_AAG3(L1, L2, L3)
IF_PERM_2_IN_1_GA4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_3_in_gga3(V, U, W))
IF_PERM_2_IN_1_GA4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> APPEND1_3_IN_GGA3(V, U, W)
APPEND1_3_IN_GGA3(._22(H, L1), L2, ._22(H, L3)) -> IF_APPEND1_3_IN_1_GGA5(H, L1, L2, L3, append1_3_in_gga3(L1, L2, L3))
APPEND1_3_IN_GGA3(._22(H, L1), L2, ._22(H, L3)) -> APPEND1_3_IN_GGA3(L1, L2, L3)
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> IF_PERM_2_IN_3_GA5(L, H, T, W, perm_2_in_ga2(W, T))
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> PERM_2_IN_GA2(W, T)

The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_3_in_aag3(V, ._22(H, U), L))
append2_3_in_aag3([]_0, L, L) -> append2_3_out_aag3([]_0, L, L)
append2_3_in_aag3(._22(H, L1), L2, ._22(H, L3)) -> if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_in_aag3(L1, L2, L3))
if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_out_aag3(L1, L2, L3)) -> append2_3_out_aag3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_1_ga4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_in_gga3(V, U, W))
append1_3_in_gga3([]_0, L, L) -> append1_3_out_gga3([]_0, L, L)
append1_3_in_gga3(._22(H, L1), L2, ._22(H, L3)) -> if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_in_gga3(L1, L2, L3))
if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_out_gga3(L1, L2, L3)) -> append1_3_out_gga3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_3_in_aag3(x1, x2, x3)  =  append2_3_in_aag1(x3)
append2_3_out_aag3(x1, x2, x3)  =  append2_3_out_aag2(x1, x2)
if_append2_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append2_3_in_1_aag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_3_in_gga3(x1, x2, x3)  =  append1_3_in_gga2(x1, x2)
append1_3_out_gga3(x1, x2, x3)  =  append1_3_out_gga1(x3)
if_append1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append1_3_in_1_gga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)
IF_APPEND1_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_APPEND1_3_IN_1_GGA2(x1, x5)
APPEND1_3_IN_GGA3(x1, x2, x3)  =  APPEND1_3_IN_GGA2(x1, x2)
APPEND2_3_IN_AAG3(x1, x2, x3)  =  APPEND2_3_IN_AAG1(x3)
IF_PERM_2_IN_3_GA5(x1, x2, x3, x4, x5)  =  IF_PERM_2_IN_3_GA2(x2, x5)
PERM_2_IN_GA2(x1, x2)  =  PERM_2_IN_GA1(x1)
IF_APPEND2_3_IN_1_AAG5(x1, x2, x3, x4, x5)  =  IF_APPEND2_3_IN_1_AAG2(x1, x5)
IF_PERM_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_PERM_2_IN_2_GA2(x2, x6)
IF_PERM_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM_2_IN_1_GA1(x4)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA2(L, ._22(H, T)) -> IF_PERM_2_IN_1_GA4(L, H, T, append2_3_in_aag3(V, ._22(H, U), L))
PERM_2_IN_GA2(L, ._22(H, T)) -> APPEND2_3_IN_AAG3(V, ._22(H, U), L)
APPEND2_3_IN_AAG3(._22(H, L1), L2, ._22(H, L3)) -> IF_APPEND2_3_IN_1_AAG5(H, L1, L2, L3, append2_3_in_aag3(L1, L2, L3))
APPEND2_3_IN_AAG3(._22(H, L1), L2, ._22(H, L3)) -> APPEND2_3_IN_AAG3(L1, L2, L3)
IF_PERM_2_IN_1_GA4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_3_in_gga3(V, U, W))
IF_PERM_2_IN_1_GA4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> APPEND1_3_IN_GGA3(V, U, W)
APPEND1_3_IN_GGA3(._22(H, L1), L2, ._22(H, L3)) -> IF_APPEND1_3_IN_1_GGA5(H, L1, L2, L3, append1_3_in_gga3(L1, L2, L3))
APPEND1_3_IN_GGA3(._22(H, L1), L2, ._22(H, L3)) -> APPEND1_3_IN_GGA3(L1, L2, L3)
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> IF_PERM_2_IN_3_GA5(L, H, T, W, perm_2_in_ga2(W, T))
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> PERM_2_IN_GA2(W, T)

The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_3_in_aag3(V, ._22(H, U), L))
append2_3_in_aag3([]_0, L, L) -> append2_3_out_aag3([]_0, L, L)
append2_3_in_aag3(._22(H, L1), L2, ._22(H, L3)) -> if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_in_aag3(L1, L2, L3))
if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_out_aag3(L1, L2, L3)) -> append2_3_out_aag3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_1_ga4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_in_gga3(V, U, W))
append1_3_in_gga3([]_0, L, L) -> append1_3_out_gga3([]_0, L, L)
append1_3_in_gga3(._22(H, L1), L2, ._22(H, L3)) -> if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_in_gga3(L1, L2, L3))
if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_out_gga3(L1, L2, L3)) -> append1_3_out_gga3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_3_in_aag3(x1, x2, x3)  =  append2_3_in_aag1(x3)
append2_3_out_aag3(x1, x2, x3)  =  append2_3_out_aag2(x1, x2)
if_append2_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append2_3_in_1_aag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_3_in_gga3(x1, x2, x3)  =  append1_3_in_gga2(x1, x2)
append1_3_out_gga3(x1, x2, x3)  =  append1_3_out_gga1(x3)
if_append1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append1_3_in_1_gga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)
IF_APPEND1_3_IN_1_GGA5(x1, x2, x3, x4, x5)  =  IF_APPEND1_3_IN_1_GGA2(x1, x5)
APPEND1_3_IN_GGA3(x1, x2, x3)  =  APPEND1_3_IN_GGA2(x1, x2)
APPEND2_3_IN_AAG3(x1, x2, x3)  =  APPEND2_3_IN_AAG1(x3)
IF_PERM_2_IN_3_GA5(x1, x2, x3, x4, x5)  =  IF_PERM_2_IN_3_GA2(x2, x5)
PERM_2_IN_GA2(x1, x2)  =  PERM_2_IN_GA1(x1)
IF_APPEND2_3_IN_1_AAG5(x1, x2, x3, x4, x5)  =  IF_APPEND2_3_IN_1_AAG2(x1, x5)
IF_PERM_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_PERM_2_IN_2_GA2(x2, x6)
IF_PERM_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM_2_IN_1_GA1(x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 3 SCCs with 5 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND1_3_IN_GGA3(._22(H, L1), L2, ._22(H, L3)) -> APPEND1_3_IN_GGA3(L1, L2, L3)

The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_3_in_aag3(V, ._22(H, U), L))
append2_3_in_aag3([]_0, L, L) -> append2_3_out_aag3([]_0, L, L)
append2_3_in_aag3(._22(H, L1), L2, ._22(H, L3)) -> if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_in_aag3(L1, L2, L3))
if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_out_aag3(L1, L2, L3)) -> append2_3_out_aag3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_1_ga4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_in_gga3(V, U, W))
append1_3_in_gga3([]_0, L, L) -> append1_3_out_gga3([]_0, L, L)
append1_3_in_gga3(._22(H, L1), L2, ._22(H, L3)) -> if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_in_gga3(L1, L2, L3))
if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_out_gga3(L1, L2, L3)) -> append1_3_out_gga3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_3_in_aag3(x1, x2, x3)  =  append2_3_in_aag1(x3)
append2_3_out_aag3(x1, x2, x3)  =  append2_3_out_aag2(x1, x2)
if_append2_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append2_3_in_1_aag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_3_in_gga3(x1, x2, x3)  =  append1_3_in_gga2(x1, x2)
append1_3_out_gga3(x1, x2, x3)  =  append1_3_out_gga1(x3)
if_append1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append1_3_in_1_gga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)
APPEND1_3_IN_GGA3(x1, x2, x3)  =  APPEND1_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND1_3_IN_GGA3(._22(H, L1), L2, ._22(H, L3)) -> APPEND1_3_IN_GGA3(L1, L2, L3)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
APPEND1_3_IN_GGA3(x1, x2, x3)  =  APPEND1_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APPEND1_3_IN_GGA2(._22(H, L1), L2) -> APPEND1_3_IN_GGA2(L1, L2)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APPEND1_3_IN_GGA2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND2_3_IN_AAG3(._22(H, L1), L2, ._22(H, L3)) -> APPEND2_3_IN_AAG3(L1, L2, L3)

The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_3_in_aag3(V, ._22(H, U), L))
append2_3_in_aag3([]_0, L, L) -> append2_3_out_aag3([]_0, L, L)
append2_3_in_aag3(._22(H, L1), L2, ._22(H, L3)) -> if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_in_aag3(L1, L2, L3))
if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_out_aag3(L1, L2, L3)) -> append2_3_out_aag3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_1_ga4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_in_gga3(V, U, W))
append1_3_in_gga3([]_0, L, L) -> append1_3_out_gga3([]_0, L, L)
append1_3_in_gga3(._22(H, L1), L2, ._22(H, L3)) -> if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_in_gga3(L1, L2, L3))
if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_out_gga3(L1, L2, L3)) -> append1_3_out_gga3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_3_in_aag3(x1, x2, x3)  =  append2_3_in_aag1(x3)
append2_3_out_aag3(x1, x2, x3)  =  append2_3_out_aag2(x1, x2)
if_append2_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append2_3_in_1_aag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_3_in_gga3(x1, x2, x3)  =  append1_3_in_gga2(x1, x2)
append1_3_out_gga3(x1, x2, x3)  =  append1_3_out_gga1(x3)
if_append1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append1_3_in_1_gga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)
APPEND2_3_IN_AAG3(x1, x2, x3)  =  APPEND2_3_IN_AAG1(x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

APPEND2_3_IN_AAG3(._22(H, L1), L2, ._22(H, L3)) -> APPEND2_3_IN_AAG3(L1, L2, L3)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
APPEND2_3_IN_AAG3(x1, x2, x3)  =  APPEND2_3_IN_AAG1(x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

APPEND2_3_IN_AAG1(._22(H, L3)) -> APPEND2_3_IN_AAG1(L3)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {APPEND2_3_IN_AAG1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA2(L, ._22(H, T)) -> IF_PERM_2_IN_1_GA4(L, H, T, append2_3_in_aag3(V, ._22(H, U), L))
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> PERM_2_IN_GA2(W, T)
IF_PERM_2_IN_1_GA4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_3_in_gga3(V, U, W))

The TRS R consists of the following rules:

perm_2_in_ga2([]_0, []_0) -> perm_2_out_ga2([]_0, []_0)
perm_2_in_ga2(L, ._22(H, T)) -> if_perm_2_in_1_ga4(L, H, T, append2_3_in_aag3(V, ._22(H, U), L))
append2_3_in_aag3([]_0, L, L) -> append2_3_out_aag3([]_0, L, L)
append2_3_in_aag3(._22(H, L1), L2, ._22(H, L3)) -> if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_in_aag3(L1, L2, L3))
if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_out_aag3(L1, L2, L3)) -> append2_3_out_aag3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_1_ga4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_in_gga3(V, U, W))
append1_3_in_gga3([]_0, L, L) -> append1_3_out_gga3([]_0, L, L)
append1_3_in_gga3(._22(H, L1), L2, ._22(H, L3)) -> if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_in_gga3(L1, L2, L3))
if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_out_gga3(L1, L2, L3)) -> append1_3_out_gga3(._22(H, L1), L2, ._22(H, L3))
if_perm_2_in_2_ga6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> if_perm_2_in_3_ga5(L, H, T, W, perm_2_in_ga2(W, T))
if_perm_2_in_3_ga5(L, H, T, W, perm_2_out_ga2(W, T)) -> perm_2_out_ga2(L, ._22(H, T))

The argument filtering Pi contains the following mapping:
perm_2_in_ga2(x1, x2)  =  perm_2_in_ga1(x1)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
perm_2_out_ga2(x1, x2)  =  perm_2_out_ga1(x2)
if_perm_2_in_1_ga4(x1, x2, x3, x4)  =  if_perm_2_in_1_ga1(x4)
append2_3_in_aag3(x1, x2, x3)  =  append2_3_in_aag1(x3)
append2_3_out_aag3(x1, x2, x3)  =  append2_3_out_aag2(x1, x2)
if_append2_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append2_3_in_1_aag2(x1, x5)
if_perm_2_in_2_ga6(x1, x2, x3, x4, x5, x6)  =  if_perm_2_in_2_ga2(x2, x6)
append1_3_in_gga3(x1, x2, x3)  =  append1_3_in_gga2(x1, x2)
append1_3_out_gga3(x1, x2, x3)  =  append1_3_out_gga1(x3)
if_append1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append1_3_in_1_gga2(x1, x5)
if_perm_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_perm_2_in_3_ga2(x2, x5)
PERM_2_IN_GA2(x1, x2)  =  PERM_2_IN_GA1(x1)
IF_PERM_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_PERM_2_IN_2_GA2(x2, x6)
IF_PERM_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM_2_IN_1_GA1(x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA2(L, ._22(H, T)) -> IF_PERM_2_IN_1_GA4(L, H, T, append2_3_in_aag3(V, ._22(H, U), L))
IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_3_out_gga3(V, U, W)) -> PERM_2_IN_GA2(W, T)
IF_PERM_2_IN_1_GA4(L, H, T, append2_3_out_aag3(V, ._22(H, U), L)) -> IF_PERM_2_IN_2_GA6(L, H, T, V, U, append1_3_in_gga3(V, U, W))

The TRS R consists of the following rules:

append2_3_in_aag3([]_0, L, L) -> append2_3_out_aag3([]_0, L, L)
append2_3_in_aag3(._22(H, L1), L2, ._22(H, L3)) -> if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_in_aag3(L1, L2, L3))
append1_3_in_gga3([]_0, L, L) -> append1_3_out_gga3([]_0, L, L)
append1_3_in_gga3(._22(H, L1), L2, ._22(H, L3)) -> if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_in_gga3(L1, L2, L3))
if_append2_3_in_1_aag5(H, L1, L2, L3, append2_3_out_aag3(L1, L2, L3)) -> append2_3_out_aag3(._22(H, L1), L2, ._22(H, L3))
if_append1_3_in_1_gga5(H, L1, L2, L3, append1_3_out_gga3(L1, L2, L3)) -> append1_3_out_gga3(._22(H, L1), L2, ._22(H, L3))

The argument filtering Pi contains the following mapping:
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
append2_3_in_aag3(x1, x2, x3)  =  append2_3_in_aag1(x3)
append2_3_out_aag3(x1, x2, x3)  =  append2_3_out_aag2(x1, x2)
if_append2_3_in_1_aag5(x1, x2, x3, x4, x5)  =  if_append2_3_in_1_aag2(x1, x5)
append1_3_in_gga3(x1, x2, x3)  =  append1_3_in_gga2(x1, x2)
append1_3_out_gga3(x1, x2, x3)  =  append1_3_out_gga1(x3)
if_append1_3_in_1_gga5(x1, x2, x3, x4, x5)  =  if_append1_3_in_1_gga2(x1, x5)
PERM_2_IN_GA2(x1, x2)  =  PERM_2_IN_GA1(x1)
IF_PERM_2_IN_2_GA6(x1, x2, x3, x4, x5, x6)  =  IF_PERM_2_IN_2_GA2(x2, x6)
IF_PERM_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_PERM_2_IN_1_GA1(x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA1(L) -> IF_PERM_2_IN_1_GA1(append2_3_in_aag1(L))
IF_PERM_2_IN_2_GA2(H, append1_3_out_gga1(W)) -> PERM_2_IN_GA1(W)
IF_PERM_2_IN_1_GA1(append2_3_out_aag2(V, ._22(H, U))) -> IF_PERM_2_IN_2_GA2(H, append1_3_in_gga2(V, U))

The TRS R consists of the following rules:

append2_3_in_aag1(L) -> append2_3_out_aag2([]_0, L)
append2_3_in_aag1(._22(H, L3)) -> if_append2_3_in_1_aag2(H, append2_3_in_aag1(L3))
append1_3_in_gga2([]_0, L) -> append1_3_out_gga1(L)
append1_3_in_gga2(._22(H, L1), L2) -> if_append1_3_in_1_gga2(H, append1_3_in_gga2(L1, L2))
if_append2_3_in_1_aag2(H, append2_3_out_aag2(L1, L2)) -> append2_3_out_aag2(._22(H, L1), L2)
if_append1_3_in_1_gga2(H, append1_3_out_gga1(L3)) -> append1_3_out_gga1(._22(H, L3))

The set Q consists of the following terms:

append2_3_in_aag1(x0)
append1_3_in_gga2(x0, x1)
if_append2_3_in_1_aag2(x0, x1)
if_append1_3_in_1_gga2(x0, x1)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_PERM_2_IN_1_GA1, PERM_2_IN_GA1, IF_PERM_2_IN_2_GA2}.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

append1_3_in_gga2([]_0, L) -> append1_3_out_gga1(L)

Used ordering: POLO with Polynomial interpretation:

POL(append2_3_in_aag1(x1)) = 2 + x1   
POL(._22(x1, x2)) = 1 + x1 + x2   
POL(IF_PERM_2_IN_2_GA2(x1, x2)) = 1 + x1 + x2   
POL(append2_3_out_aag2(x1, x2)) = x1 + x2   
POL(append1_3_in_gga2(x1, x2)) = x1 + x2   
POL(IF_PERM_2_IN_1_GA1(x1)) = x1   
POL(if_append1_3_in_1_gga2(x1, x2)) = 1 + x1 + x2   
POL(if_append2_3_in_1_aag2(x1, x2)) = 1 + x1 + x2   
POL([]_0) = 2   
POL(append1_3_out_gga1(x1)) = 1 + x1   
POL(PERM_2_IN_GA1(x1)) = 2 + x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ QDPPoloProof

Q DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA1(L) -> IF_PERM_2_IN_1_GA1(append2_3_in_aag1(L))
IF_PERM_2_IN_2_GA2(H, append1_3_out_gga1(W)) -> PERM_2_IN_GA1(W)
IF_PERM_2_IN_1_GA1(append2_3_out_aag2(V, ._22(H, U))) -> IF_PERM_2_IN_2_GA2(H, append1_3_in_gga2(V, U))

The TRS R consists of the following rules:

append2_3_in_aag1(L) -> append2_3_out_aag2([]_0, L)
append2_3_in_aag1(._22(H, L3)) -> if_append2_3_in_1_aag2(H, append2_3_in_aag1(L3))
append1_3_in_gga2(._22(H, L1), L2) -> if_append1_3_in_1_gga2(H, append1_3_in_gga2(L1, L2))
if_append2_3_in_1_aag2(H, append2_3_out_aag2(L1, L2)) -> append2_3_out_aag2(._22(H, L1), L2)
if_append1_3_in_1_gga2(H, append1_3_out_gga1(L3)) -> append1_3_out_gga1(._22(H, L3))

The set Q consists of the following terms:

append2_3_in_aag1(x0)
append1_3_in_gga2(x0, x1)
if_append2_3_in_1_aag2(x0, x1)
if_append1_3_in_1_gga2(x0, x1)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_PERM_2_IN_1_GA1, PERM_2_IN_GA1, IF_PERM_2_IN_2_GA2}.
By using a polynomial ordering, the following set of Dependency Pairs of this DP problem can be strictly oriented.

IF_PERM_2_IN_2_GA2(H, append1_3_out_gga1(W)) -> PERM_2_IN_GA1(W)
The remaining Dependency Pairs were at least non-strictly be oriented.

PERM_2_IN_GA1(L) -> IF_PERM_2_IN_1_GA1(append2_3_in_aag1(L))
IF_PERM_2_IN_1_GA1(append2_3_out_aag2(V, ._22(H, U))) -> IF_PERM_2_IN_2_GA2(H, append1_3_in_gga2(V, U))
With the implicit AFS we had to orient the following set of usable rules non-strictly.

append1_3_in_gga2(._22(H, L1), L2) -> if_append1_3_in_1_gga2(H, append1_3_in_gga2(L1, L2))
if_append1_3_in_1_gga2(H, append1_3_out_gga1(L3)) -> append1_3_out_gga1(._22(H, L3))
Used ordering: POLO with Polynomial interpretation:

POL(._22(x1, x2)) = 0   
POL(append2_3_in_aag1(x1)) = 0   
POL(IF_PERM_2_IN_2_GA2(x1, x2)) = x2   
POL(append2_3_out_aag2(x1, x2)) = 0   
POL(append1_3_in_gga2(x1, x2)) = 0   
POL(IF_PERM_2_IN_1_GA1(x1)) = 0   
POL(if_append1_3_in_1_gga2(x1, x2)) = x2   
POL(if_append2_3_in_1_aag2(x1, x2)) = 0   
POL([]_0) = 0   
POL(append1_3_out_gga1(x1)) = 1   
POL(PERM_2_IN_GA1(x1)) = 0   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ QDPPoloProof
QDP
                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

PERM_2_IN_GA1(L) -> IF_PERM_2_IN_1_GA1(append2_3_in_aag1(L))
IF_PERM_2_IN_1_GA1(append2_3_out_aag2(V, ._22(H, U))) -> IF_PERM_2_IN_2_GA2(H, append1_3_in_gga2(V, U))

The TRS R consists of the following rules:

append2_3_in_aag1(L) -> append2_3_out_aag2([]_0, L)
append2_3_in_aag1(._22(H, L3)) -> if_append2_3_in_1_aag2(H, append2_3_in_aag1(L3))
append1_3_in_gga2(._22(H, L1), L2) -> if_append1_3_in_1_gga2(H, append1_3_in_gga2(L1, L2))
if_append2_3_in_1_aag2(H, append2_3_out_aag2(L1, L2)) -> append2_3_out_aag2(._22(H, L1), L2)
if_append1_3_in_1_gga2(H, append1_3_out_gga1(L3)) -> append1_3_out_gga1(._22(H, L3))

The set Q consists of the following terms:

append2_3_in_aag1(x0)
append1_3_in_gga2(x0, x1)
if_append2_3_in_1_aag2(x0, x1)
if_append1_3_in_1_gga2(x0, x1)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_PERM_2_IN_1_GA1, PERM_2_IN_GA1, IF_PERM_2_IN_2_GA2}.
The approximation of the Dependency Graph contains 0 SCCs with 2 less nodes.