Left Termination of the query pattern fib(b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

add3(00, 00, 00).
add3(s1(X), Y, s1(N)) :- add3(X, Y, N).
add3(X, s1(Y), s1(N)) :- add3(X, Y, N).
fib2(00, 00).
fib2(s1(00), s1(00)).
fib2(s12 (X), N) :- fib2(s1(X), N1), fib2(X, N2), add3(N1, N2, N).


With regard to the inferred argument filtering the predicates were used in the following modes:
fib2: (b,f)
add3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


fib_2_in_ga2(0_0, 0_0) -> fib_2_out_ga2(0_0, 0_0)
fib_2_in_ga2(s_11(0_0), s_11(0_0)) -> fib_2_out_ga2(s_11(0_0), s_11(0_0))
fib_2_in_ga2(s_11(s_11(X)), N) -> if_fib_2_in_1_ga3(X, N, fib_2_in_ga2(s_11(X), N1))
if_fib_2_in_1_ga3(X, N, fib_2_out_ga2(s_11(X), N1)) -> if_fib_2_in_2_ga4(X, N, N1, fib_2_in_ga2(X, N2))
if_fib_2_in_2_ga4(X, N, N1, fib_2_out_ga2(X, N2)) -> if_fib_2_in_3_ga5(X, N, N1, N2, add_3_in_gga3(N1, N2, N))
add_3_in_gga3(0_0, 0_0, 0_0) -> add_3_out_gga3(0_0, 0_0, 0_0)
add_3_in_gga3(s_11(X), Y, s_11(N)) -> if_add_3_in_1_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
add_3_in_gga3(X, s_11(Y), s_11(N)) -> if_add_3_in_2_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
if_add_3_in_2_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(X, s_11(Y), s_11(N))
if_add_3_in_1_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(s_11(X), Y, s_11(N))
if_fib_2_in_3_ga5(X, N, N1, N2, add_3_out_gga3(N1, N2, N)) -> fib_2_out_ga2(s_11(s_11(X)), N)

The argument filtering Pi contains the following mapping:
fib_2_in_ga2(x1, x2)  =  fib_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
fib_2_out_ga2(x1, x2)  =  fib_2_out_ga1(x2)
if_fib_2_in_1_ga3(x1, x2, x3)  =  if_fib_2_in_1_ga2(x1, x3)
if_fib_2_in_2_ga4(x1, x2, x3, x4)  =  if_fib_2_in_2_ga2(x3, x4)
if_fib_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_fib_2_in_3_ga1(x5)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_add_3_in_2_gga4(x1, x2, x3, x4)  =  if_add_3_in_2_gga1(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

fib_2_in_ga2(0_0, 0_0) -> fib_2_out_ga2(0_0, 0_0)
fib_2_in_ga2(s_11(0_0), s_11(0_0)) -> fib_2_out_ga2(s_11(0_0), s_11(0_0))
fib_2_in_ga2(s_11(s_11(X)), N) -> if_fib_2_in_1_ga3(X, N, fib_2_in_ga2(s_11(X), N1))
if_fib_2_in_1_ga3(X, N, fib_2_out_ga2(s_11(X), N1)) -> if_fib_2_in_2_ga4(X, N, N1, fib_2_in_ga2(X, N2))
if_fib_2_in_2_ga4(X, N, N1, fib_2_out_ga2(X, N2)) -> if_fib_2_in_3_ga5(X, N, N1, N2, add_3_in_gga3(N1, N2, N))
add_3_in_gga3(0_0, 0_0, 0_0) -> add_3_out_gga3(0_0, 0_0, 0_0)
add_3_in_gga3(s_11(X), Y, s_11(N)) -> if_add_3_in_1_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
add_3_in_gga3(X, s_11(Y), s_11(N)) -> if_add_3_in_2_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
if_add_3_in_2_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(X, s_11(Y), s_11(N))
if_add_3_in_1_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(s_11(X), Y, s_11(N))
if_fib_2_in_3_ga5(X, N, N1, N2, add_3_out_gga3(N1, N2, N)) -> fib_2_out_ga2(s_11(s_11(X)), N)

The argument filtering Pi contains the following mapping:
fib_2_in_ga2(x1, x2)  =  fib_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
fib_2_out_ga2(x1, x2)  =  fib_2_out_ga1(x2)
if_fib_2_in_1_ga3(x1, x2, x3)  =  if_fib_2_in_1_ga2(x1, x3)
if_fib_2_in_2_ga4(x1, x2, x3, x4)  =  if_fib_2_in_2_ga2(x3, x4)
if_fib_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_fib_2_in_3_ga1(x5)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_add_3_in_2_gga4(x1, x2, x3, x4)  =  if_add_3_in_2_gga1(x4)


Pi DP problem:
The TRS P consists of the following rules:

FIB_2_IN_GA2(s_11(s_11(X)), N) -> IF_FIB_2_IN_1_GA3(X, N, fib_2_in_ga2(s_11(X), N1))
FIB_2_IN_GA2(s_11(s_11(X)), N) -> FIB_2_IN_GA2(s_11(X), N1)
IF_FIB_2_IN_1_GA3(X, N, fib_2_out_ga2(s_11(X), N1)) -> IF_FIB_2_IN_2_GA4(X, N, N1, fib_2_in_ga2(X, N2))
IF_FIB_2_IN_1_GA3(X, N, fib_2_out_ga2(s_11(X), N1)) -> FIB_2_IN_GA2(X, N2)
IF_FIB_2_IN_2_GA4(X, N, N1, fib_2_out_ga2(X, N2)) -> IF_FIB_2_IN_3_GA5(X, N, N1, N2, add_3_in_gga3(N1, N2, N))
IF_FIB_2_IN_2_GA4(X, N, N1, fib_2_out_ga2(X, N2)) -> ADD_3_IN_GGA3(N1, N2, N)
ADD_3_IN_GGA3(s_11(X), Y, s_11(N)) -> IF_ADD_3_IN_1_GGA4(X, Y, N, add_3_in_gga3(X, Y, N))
ADD_3_IN_GGA3(s_11(X), Y, s_11(N)) -> ADD_3_IN_GGA3(X, Y, N)
ADD_3_IN_GGA3(X, s_11(Y), s_11(N)) -> IF_ADD_3_IN_2_GGA4(X, Y, N, add_3_in_gga3(X, Y, N))
ADD_3_IN_GGA3(X, s_11(Y), s_11(N)) -> ADD_3_IN_GGA3(X, Y, N)

The TRS R consists of the following rules:

fib_2_in_ga2(0_0, 0_0) -> fib_2_out_ga2(0_0, 0_0)
fib_2_in_ga2(s_11(0_0), s_11(0_0)) -> fib_2_out_ga2(s_11(0_0), s_11(0_0))
fib_2_in_ga2(s_11(s_11(X)), N) -> if_fib_2_in_1_ga3(X, N, fib_2_in_ga2(s_11(X), N1))
if_fib_2_in_1_ga3(X, N, fib_2_out_ga2(s_11(X), N1)) -> if_fib_2_in_2_ga4(X, N, N1, fib_2_in_ga2(X, N2))
if_fib_2_in_2_ga4(X, N, N1, fib_2_out_ga2(X, N2)) -> if_fib_2_in_3_ga5(X, N, N1, N2, add_3_in_gga3(N1, N2, N))
add_3_in_gga3(0_0, 0_0, 0_0) -> add_3_out_gga3(0_0, 0_0, 0_0)
add_3_in_gga3(s_11(X), Y, s_11(N)) -> if_add_3_in_1_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
add_3_in_gga3(X, s_11(Y), s_11(N)) -> if_add_3_in_2_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
if_add_3_in_2_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(X, s_11(Y), s_11(N))
if_add_3_in_1_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(s_11(X), Y, s_11(N))
if_fib_2_in_3_ga5(X, N, N1, N2, add_3_out_gga3(N1, N2, N)) -> fib_2_out_ga2(s_11(s_11(X)), N)

The argument filtering Pi contains the following mapping:
fib_2_in_ga2(x1, x2)  =  fib_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
fib_2_out_ga2(x1, x2)  =  fib_2_out_ga1(x2)
if_fib_2_in_1_ga3(x1, x2, x3)  =  if_fib_2_in_1_ga2(x1, x3)
if_fib_2_in_2_ga4(x1, x2, x3, x4)  =  if_fib_2_in_2_ga2(x3, x4)
if_fib_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_fib_2_in_3_ga1(x5)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_add_3_in_2_gga4(x1, x2, x3, x4)  =  if_add_3_in_2_gga1(x4)
IF_FIB_2_IN_1_GA3(x1, x2, x3)  =  IF_FIB_2_IN_1_GA2(x1, x3)
IF_ADD_3_IN_2_GGA4(x1, x2, x3, x4)  =  IF_ADD_3_IN_2_GGA1(x4)
IF_ADD_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_ADD_3_IN_1_GGA1(x4)
ADD_3_IN_GGA3(x1, x2, x3)  =  ADD_3_IN_GGA2(x1, x2)
FIB_2_IN_GA2(x1, x2)  =  FIB_2_IN_GA1(x1)
IF_FIB_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_FIB_2_IN_2_GA2(x3, x4)
IF_FIB_2_IN_3_GA5(x1, x2, x3, x4, x5)  =  IF_FIB_2_IN_3_GA1(x5)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

FIB_2_IN_GA2(s_11(s_11(X)), N) -> IF_FIB_2_IN_1_GA3(X, N, fib_2_in_ga2(s_11(X), N1))
FIB_2_IN_GA2(s_11(s_11(X)), N) -> FIB_2_IN_GA2(s_11(X), N1)
IF_FIB_2_IN_1_GA3(X, N, fib_2_out_ga2(s_11(X), N1)) -> IF_FIB_2_IN_2_GA4(X, N, N1, fib_2_in_ga2(X, N2))
IF_FIB_2_IN_1_GA3(X, N, fib_2_out_ga2(s_11(X), N1)) -> FIB_2_IN_GA2(X, N2)
IF_FIB_2_IN_2_GA4(X, N, N1, fib_2_out_ga2(X, N2)) -> IF_FIB_2_IN_3_GA5(X, N, N1, N2, add_3_in_gga3(N1, N2, N))
IF_FIB_2_IN_2_GA4(X, N, N1, fib_2_out_ga2(X, N2)) -> ADD_3_IN_GGA3(N1, N2, N)
ADD_3_IN_GGA3(s_11(X), Y, s_11(N)) -> IF_ADD_3_IN_1_GGA4(X, Y, N, add_3_in_gga3(X, Y, N))
ADD_3_IN_GGA3(s_11(X), Y, s_11(N)) -> ADD_3_IN_GGA3(X, Y, N)
ADD_3_IN_GGA3(X, s_11(Y), s_11(N)) -> IF_ADD_3_IN_2_GGA4(X, Y, N, add_3_in_gga3(X, Y, N))
ADD_3_IN_GGA3(X, s_11(Y), s_11(N)) -> ADD_3_IN_GGA3(X, Y, N)

The TRS R consists of the following rules:

fib_2_in_ga2(0_0, 0_0) -> fib_2_out_ga2(0_0, 0_0)
fib_2_in_ga2(s_11(0_0), s_11(0_0)) -> fib_2_out_ga2(s_11(0_0), s_11(0_0))
fib_2_in_ga2(s_11(s_11(X)), N) -> if_fib_2_in_1_ga3(X, N, fib_2_in_ga2(s_11(X), N1))
if_fib_2_in_1_ga3(X, N, fib_2_out_ga2(s_11(X), N1)) -> if_fib_2_in_2_ga4(X, N, N1, fib_2_in_ga2(X, N2))
if_fib_2_in_2_ga4(X, N, N1, fib_2_out_ga2(X, N2)) -> if_fib_2_in_3_ga5(X, N, N1, N2, add_3_in_gga3(N1, N2, N))
add_3_in_gga3(0_0, 0_0, 0_0) -> add_3_out_gga3(0_0, 0_0, 0_0)
add_3_in_gga3(s_11(X), Y, s_11(N)) -> if_add_3_in_1_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
add_3_in_gga3(X, s_11(Y), s_11(N)) -> if_add_3_in_2_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
if_add_3_in_2_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(X, s_11(Y), s_11(N))
if_add_3_in_1_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(s_11(X), Y, s_11(N))
if_fib_2_in_3_ga5(X, N, N1, N2, add_3_out_gga3(N1, N2, N)) -> fib_2_out_ga2(s_11(s_11(X)), N)

The argument filtering Pi contains the following mapping:
fib_2_in_ga2(x1, x2)  =  fib_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
fib_2_out_ga2(x1, x2)  =  fib_2_out_ga1(x2)
if_fib_2_in_1_ga3(x1, x2, x3)  =  if_fib_2_in_1_ga2(x1, x3)
if_fib_2_in_2_ga4(x1, x2, x3, x4)  =  if_fib_2_in_2_ga2(x3, x4)
if_fib_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_fib_2_in_3_ga1(x5)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_add_3_in_2_gga4(x1, x2, x3, x4)  =  if_add_3_in_2_gga1(x4)
IF_FIB_2_IN_1_GA3(x1, x2, x3)  =  IF_FIB_2_IN_1_GA2(x1, x3)
IF_ADD_3_IN_2_GGA4(x1, x2, x3, x4)  =  IF_ADD_3_IN_2_GGA1(x4)
IF_ADD_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_ADD_3_IN_1_GGA1(x4)
ADD_3_IN_GGA3(x1, x2, x3)  =  ADD_3_IN_GGA2(x1, x2)
FIB_2_IN_GA2(x1, x2)  =  FIB_2_IN_GA1(x1)
IF_FIB_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_FIB_2_IN_2_GA2(x3, x4)
IF_FIB_2_IN_3_GA5(x1, x2, x3, x4, x5)  =  IF_FIB_2_IN_3_GA1(x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 5 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

ADD_3_IN_GGA3(s_11(X), Y, s_11(N)) -> ADD_3_IN_GGA3(X, Y, N)
ADD_3_IN_GGA3(X, s_11(Y), s_11(N)) -> ADD_3_IN_GGA3(X, Y, N)

The TRS R consists of the following rules:

fib_2_in_ga2(0_0, 0_0) -> fib_2_out_ga2(0_0, 0_0)
fib_2_in_ga2(s_11(0_0), s_11(0_0)) -> fib_2_out_ga2(s_11(0_0), s_11(0_0))
fib_2_in_ga2(s_11(s_11(X)), N) -> if_fib_2_in_1_ga3(X, N, fib_2_in_ga2(s_11(X), N1))
if_fib_2_in_1_ga3(X, N, fib_2_out_ga2(s_11(X), N1)) -> if_fib_2_in_2_ga4(X, N, N1, fib_2_in_ga2(X, N2))
if_fib_2_in_2_ga4(X, N, N1, fib_2_out_ga2(X, N2)) -> if_fib_2_in_3_ga5(X, N, N1, N2, add_3_in_gga3(N1, N2, N))
add_3_in_gga3(0_0, 0_0, 0_0) -> add_3_out_gga3(0_0, 0_0, 0_0)
add_3_in_gga3(s_11(X), Y, s_11(N)) -> if_add_3_in_1_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
add_3_in_gga3(X, s_11(Y), s_11(N)) -> if_add_3_in_2_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
if_add_3_in_2_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(X, s_11(Y), s_11(N))
if_add_3_in_1_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(s_11(X), Y, s_11(N))
if_fib_2_in_3_ga5(X, N, N1, N2, add_3_out_gga3(N1, N2, N)) -> fib_2_out_ga2(s_11(s_11(X)), N)

The argument filtering Pi contains the following mapping:
fib_2_in_ga2(x1, x2)  =  fib_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
fib_2_out_ga2(x1, x2)  =  fib_2_out_ga1(x2)
if_fib_2_in_1_ga3(x1, x2, x3)  =  if_fib_2_in_1_ga2(x1, x3)
if_fib_2_in_2_ga4(x1, x2, x3, x4)  =  if_fib_2_in_2_ga2(x3, x4)
if_fib_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_fib_2_in_3_ga1(x5)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_add_3_in_2_gga4(x1, x2, x3, x4)  =  if_add_3_in_2_gga1(x4)
ADD_3_IN_GGA3(x1, x2, x3)  =  ADD_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

ADD_3_IN_GGA3(s_11(X), Y, s_11(N)) -> ADD_3_IN_GGA3(X, Y, N)
ADD_3_IN_GGA3(X, s_11(Y), s_11(N)) -> ADD_3_IN_GGA3(X, Y, N)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
ADD_3_IN_GGA3(x1, x2, x3)  =  ADD_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

ADD_3_IN_GGA2(s_11(X), Y) -> ADD_3_IN_GGA2(X, Y)
ADD_3_IN_GGA2(X, s_11(Y)) -> ADD_3_IN_GGA2(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {ADD_3_IN_GGA2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IF_FIB_2_IN_1_GA3(X, N, fib_2_out_ga2(s_11(X), N1)) -> FIB_2_IN_GA2(X, N2)
FIB_2_IN_GA2(s_11(s_11(X)), N) -> FIB_2_IN_GA2(s_11(X), N1)
FIB_2_IN_GA2(s_11(s_11(X)), N) -> IF_FIB_2_IN_1_GA3(X, N, fib_2_in_ga2(s_11(X), N1))

The TRS R consists of the following rules:

fib_2_in_ga2(0_0, 0_0) -> fib_2_out_ga2(0_0, 0_0)
fib_2_in_ga2(s_11(0_0), s_11(0_0)) -> fib_2_out_ga2(s_11(0_0), s_11(0_0))
fib_2_in_ga2(s_11(s_11(X)), N) -> if_fib_2_in_1_ga3(X, N, fib_2_in_ga2(s_11(X), N1))
if_fib_2_in_1_ga3(X, N, fib_2_out_ga2(s_11(X), N1)) -> if_fib_2_in_2_ga4(X, N, N1, fib_2_in_ga2(X, N2))
if_fib_2_in_2_ga4(X, N, N1, fib_2_out_ga2(X, N2)) -> if_fib_2_in_3_ga5(X, N, N1, N2, add_3_in_gga3(N1, N2, N))
add_3_in_gga3(0_0, 0_0, 0_0) -> add_3_out_gga3(0_0, 0_0, 0_0)
add_3_in_gga3(s_11(X), Y, s_11(N)) -> if_add_3_in_1_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
add_3_in_gga3(X, s_11(Y), s_11(N)) -> if_add_3_in_2_gga4(X, Y, N, add_3_in_gga3(X, Y, N))
if_add_3_in_2_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(X, s_11(Y), s_11(N))
if_add_3_in_1_gga4(X, Y, N, add_3_out_gga3(X, Y, N)) -> add_3_out_gga3(s_11(X), Y, s_11(N))
if_fib_2_in_3_ga5(X, N, N1, N2, add_3_out_gga3(N1, N2, N)) -> fib_2_out_ga2(s_11(s_11(X)), N)

The argument filtering Pi contains the following mapping:
fib_2_in_ga2(x1, x2)  =  fib_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
fib_2_out_ga2(x1, x2)  =  fib_2_out_ga1(x2)
if_fib_2_in_1_ga3(x1, x2, x3)  =  if_fib_2_in_1_ga2(x1, x3)
if_fib_2_in_2_ga4(x1, x2, x3, x4)  =  if_fib_2_in_2_ga2(x3, x4)
if_fib_2_in_3_ga5(x1, x2, x3, x4, x5)  =  if_fib_2_in_3_ga1(x5)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_add_3_in_2_gga4(x1, x2, x3, x4)  =  if_add_3_in_2_gga1(x4)
IF_FIB_2_IN_1_GA3(x1, x2, x3)  =  IF_FIB_2_IN_1_GA2(x1, x3)
FIB_2_IN_GA2(x1, x2)  =  FIB_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ PiDPToQDPProof
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

IF_FIB_2_IN_1_GA2(X, fib_2_out_ga1(N1)) -> FIB_2_IN_GA1(X)
FIB_2_IN_GA1(s_11(s_11(X))) -> FIB_2_IN_GA1(s_11(X))
FIB_2_IN_GA1(s_11(s_11(X))) -> IF_FIB_2_IN_1_GA2(X, fib_2_in_ga1(s_11(X)))

The TRS R consists of the following rules:

fib_2_in_ga1(0_0) -> fib_2_out_ga1(0_0)
fib_2_in_ga1(s_11(0_0)) -> fib_2_out_ga1(s_11(0_0))
fib_2_in_ga1(s_11(s_11(X))) -> if_fib_2_in_1_ga2(X, fib_2_in_ga1(s_11(X)))
if_fib_2_in_1_ga2(X, fib_2_out_ga1(N1)) -> if_fib_2_in_2_ga2(N1, fib_2_in_ga1(X))
if_fib_2_in_2_ga2(N1, fib_2_out_ga1(N2)) -> if_fib_2_in_3_ga1(add_3_in_gga2(N1, N2))
add_3_in_gga2(0_0, 0_0) -> add_3_out_gga1(0_0)
add_3_in_gga2(s_11(X), Y) -> if_add_3_in_1_gga1(add_3_in_gga2(X, Y))
add_3_in_gga2(X, s_11(Y)) -> if_add_3_in_2_gga1(add_3_in_gga2(X, Y))
if_add_3_in_2_gga1(add_3_out_gga1(N)) -> add_3_out_gga1(s_11(N))
if_add_3_in_1_gga1(add_3_out_gga1(N)) -> add_3_out_gga1(s_11(N))
if_fib_2_in_3_ga1(add_3_out_gga1(N)) -> fib_2_out_ga1(N)

The set Q consists of the following terms:

fib_2_in_ga1(x0)
if_fib_2_in_1_ga2(x0, x1)
if_fib_2_in_2_ga2(x0, x1)
add_3_in_gga2(x0, x1)
if_add_3_in_2_gga1(x0)
if_add_3_in_1_gga1(x0)
if_fib_2_in_3_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {FIB_2_IN_GA1, IF_FIB_2_IN_1_GA2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: