Left Termination of the query pattern sum(b,b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

sum3({}0, {}0, {}0).
sum3(.2(X1, Y1), .2(X2, Y2), .2(X3, Y3)) :- add3(X1, X2, X3), sum3(Y1, Y2, Y3).
add3(00, X, X).
add3(s1(X), Y, s1(Z)) :- add3(X, Y, Z).


With regard to the inferred argument filtering the predicates were used in the following modes:
sum3: (b,b,f)
add3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


sum_3_in_gga3([]_0, []_0, []_0) -> sum_3_out_gga3([]_0, []_0, []_0)
sum_3_in_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_in_gga3(X1, X2, X3))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_in_gga3(Y1, Y2, Y3))
if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_out_gga3(Y1, Y2, Y3)) -> sum_3_out_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_3_in_gga3(x1, x2, x3)  =  sum_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
sum_3_out_gga3(x1, x2, x3)  =  sum_3_out_gga1(x3)
if_sum_3_in_1_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_1_gga3(x2, x4, x7)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_sum_3_in_2_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_2_gga2(x5, x7)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

sum_3_in_gga3([]_0, []_0, []_0) -> sum_3_out_gga3([]_0, []_0, []_0)
sum_3_in_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_in_gga3(X1, X2, X3))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_in_gga3(Y1, Y2, Y3))
if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_out_gga3(Y1, Y2, Y3)) -> sum_3_out_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_3_in_gga3(x1, x2, x3)  =  sum_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
sum_3_out_gga3(x1, x2, x3)  =  sum_3_out_gga1(x3)
if_sum_3_in_1_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_1_gga3(x2, x4, x7)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_sum_3_in_2_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_2_gga2(x5, x7)


Pi DP problem:
The TRS P consists of the following rules:

SUM_3_IN_GGA3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> IF_SUM_3_IN_1_GGA7(X1, Y1, X2, Y2, X3, Y3, add_3_in_gga3(X1, X2, X3))
SUM_3_IN_GGA3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> ADD_3_IN_GGA3(X1, X2, X3)
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_ADD_3_IN_1_GGA4(X, Y, Z, add_3_in_gga3(X, Y, Z))
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
IF_SUM_3_IN_1_GGA7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> IF_SUM_3_IN_2_GGA7(X1, Y1, X2, Y2, X3, Y3, sum_3_in_gga3(Y1, Y2, Y3))
IF_SUM_3_IN_1_GGA7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> SUM_3_IN_GGA3(Y1, Y2, Y3)

The TRS R consists of the following rules:

sum_3_in_gga3([]_0, []_0, []_0) -> sum_3_out_gga3([]_0, []_0, []_0)
sum_3_in_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_in_gga3(X1, X2, X3))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_in_gga3(Y1, Y2, Y3))
if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_out_gga3(Y1, Y2, Y3)) -> sum_3_out_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_3_in_gga3(x1, x2, x3)  =  sum_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
sum_3_out_gga3(x1, x2, x3)  =  sum_3_out_gga1(x3)
if_sum_3_in_1_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_1_gga3(x2, x4, x7)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_sum_3_in_2_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_2_gga2(x5, x7)
IF_ADD_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_ADD_3_IN_1_GGA1(x4)
SUM_3_IN_GGA3(x1, x2, x3)  =  SUM_3_IN_GGA2(x1, x2)
IF_SUM_3_IN_2_GGA7(x1, x2, x3, x4, x5, x6, x7)  =  IF_SUM_3_IN_2_GGA2(x5, x7)
ADD_3_IN_GGA3(x1, x2, x3)  =  ADD_3_IN_GGA2(x1, x2)
IF_SUM_3_IN_1_GGA7(x1, x2, x3, x4, x5, x6, x7)  =  IF_SUM_3_IN_1_GGA3(x2, x4, x7)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

SUM_3_IN_GGA3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> IF_SUM_3_IN_1_GGA7(X1, Y1, X2, Y2, X3, Y3, add_3_in_gga3(X1, X2, X3))
SUM_3_IN_GGA3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> ADD_3_IN_GGA3(X1, X2, X3)
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_ADD_3_IN_1_GGA4(X, Y, Z, add_3_in_gga3(X, Y, Z))
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
IF_SUM_3_IN_1_GGA7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> IF_SUM_3_IN_2_GGA7(X1, Y1, X2, Y2, X3, Y3, sum_3_in_gga3(Y1, Y2, Y3))
IF_SUM_3_IN_1_GGA7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> SUM_3_IN_GGA3(Y1, Y2, Y3)

The TRS R consists of the following rules:

sum_3_in_gga3([]_0, []_0, []_0) -> sum_3_out_gga3([]_0, []_0, []_0)
sum_3_in_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_in_gga3(X1, X2, X3))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_in_gga3(Y1, Y2, Y3))
if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_out_gga3(Y1, Y2, Y3)) -> sum_3_out_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_3_in_gga3(x1, x2, x3)  =  sum_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
sum_3_out_gga3(x1, x2, x3)  =  sum_3_out_gga1(x3)
if_sum_3_in_1_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_1_gga3(x2, x4, x7)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_sum_3_in_2_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_2_gga2(x5, x7)
IF_ADD_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_ADD_3_IN_1_GGA1(x4)
SUM_3_IN_GGA3(x1, x2, x3)  =  SUM_3_IN_GGA2(x1, x2)
IF_SUM_3_IN_2_GGA7(x1, x2, x3, x4, x5, x6, x7)  =  IF_SUM_3_IN_2_GGA2(x5, x7)
ADD_3_IN_GGA3(x1, x2, x3)  =  ADD_3_IN_GGA2(x1, x2)
IF_SUM_3_IN_1_GGA7(x1, x2, x3, x4, x5, x6, x7)  =  IF_SUM_3_IN_1_GGA3(x2, x4, x7)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)

The TRS R consists of the following rules:

sum_3_in_gga3([]_0, []_0, []_0) -> sum_3_out_gga3([]_0, []_0, []_0)
sum_3_in_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_in_gga3(X1, X2, X3))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_in_gga3(Y1, Y2, Y3))
if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_out_gga3(Y1, Y2, Y3)) -> sum_3_out_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_3_in_gga3(x1, x2, x3)  =  sum_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
sum_3_out_gga3(x1, x2, x3)  =  sum_3_out_gga1(x3)
if_sum_3_in_1_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_1_gga3(x2, x4, x7)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_sum_3_in_2_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_2_gga2(x5, x7)
ADD_3_IN_GGA3(x1, x2, x3)  =  ADD_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
ADD_3_IN_GGA3(x1, x2, x3)  =  ADD_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

ADD_3_IN_GGA2(s_11(X), Y) -> ADD_3_IN_GGA2(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {ADD_3_IN_GGA2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

IF_SUM_3_IN_1_GGA7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> SUM_3_IN_GGA3(Y1, Y2, Y3)
SUM_3_IN_GGA3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> IF_SUM_3_IN_1_GGA7(X1, Y1, X2, Y2, X3, Y3, add_3_in_gga3(X1, X2, X3))

The TRS R consists of the following rules:

sum_3_in_gga3([]_0, []_0, []_0) -> sum_3_out_gga3([]_0, []_0, []_0)
sum_3_in_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_in_gga3(X1, X2, X3))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_sum_3_in_1_gga7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_in_gga3(Y1, Y2, Y3))
if_sum_3_in_2_gga7(X1, Y1, X2, Y2, X3, Y3, sum_3_out_gga3(Y1, Y2, Y3)) -> sum_3_out_gga3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_3_in_gga3(x1, x2, x3)  =  sum_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
sum_3_out_gga3(x1, x2, x3)  =  sum_3_out_gga1(x3)
if_sum_3_in_1_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_1_gga3(x2, x4, x7)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
if_sum_3_in_2_gga7(x1, x2, x3, x4, x5, x6, x7)  =  if_sum_3_in_2_gga2(x5, x7)
SUM_3_IN_GGA3(x1, x2, x3)  =  SUM_3_IN_GGA2(x1, x2)
IF_SUM_3_IN_1_GGA7(x1, x2, x3, x4, x5, x6, x7)  =  IF_SUM_3_IN_1_GGA3(x2, x4, x7)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IF_SUM_3_IN_1_GGA7(X1, Y1, X2, Y2, X3, Y3, add_3_out_gga3(X1, X2, X3)) -> SUM_3_IN_GGA3(Y1, Y2, Y3)
SUM_3_IN_GGA3(._22(X1, Y1), ._22(X2, Y2), ._22(X3, Y3)) -> IF_SUM_3_IN_1_GGA7(X1, Y1, X2, Y2, X3, Y3, add_3_in_gga3(X1, X2, X3))

The TRS R consists of the following rules:

add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))

The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
add_3_in_gga3(x1, x2, x3)  =  add_3_in_gga2(x1, x2)
add_3_out_gga3(x1, x2, x3)  =  add_3_out_gga1(x3)
if_add_3_in_1_gga4(x1, x2, x3, x4)  =  if_add_3_in_1_gga1(x4)
SUM_3_IN_GGA3(x1, x2, x3)  =  SUM_3_IN_GGA2(x1, x2)
IF_SUM_3_IN_1_GGA7(x1, x2, x3, x4, x5, x6, x7)  =  IF_SUM_3_IN_1_GGA3(x2, x4, x7)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

IF_SUM_3_IN_1_GGA3(Y1, Y2, add_3_out_gga1(X3)) -> SUM_3_IN_GGA2(Y1, Y2)
SUM_3_IN_GGA2(._22(X1, Y1), ._22(X2, Y2)) -> IF_SUM_3_IN_1_GGA3(Y1, Y2, add_3_in_gga2(X1, X2))

The TRS R consists of the following rules:

add_3_in_gga2(0_0, X) -> add_3_out_gga1(X)
add_3_in_gga2(s_11(X), Y) -> if_add_3_in_1_gga1(add_3_in_gga2(X, Y))
if_add_3_in_1_gga1(add_3_out_gga1(Z)) -> add_3_out_gga1(s_11(Z))

The set Q consists of the following terms:

add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {SUM_3_IN_GGA2, IF_SUM_3_IN_1_GGA3}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: