↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
permute2: (b,f)
delete3: (f,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
permute_2_in_ga2([]_0, []_0) -> permute_2_out_ga2([]_0, []_0)
permute_2_in_ga2(._22(X, Y), ._22(U, V)) -> if_permute_2_in_1_ga5(X, Y, U, V, delete_3_in_aga3(U, ._22(X, Y), W))
delete_3_in_aga3(X, ._22(X, Y), Y) -> delete_3_out_aga3(X, ._22(X, Y), Y)
delete_3_in_aga3(U, ._22(X, Y), ._22(X, Z)) -> if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_in_aga3(U, Y, Z))
if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_out_aga3(U, Y, Z)) -> delete_3_out_aga3(U, ._22(X, Y), ._22(X, Z))
if_permute_2_in_1_ga5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_in_ga2(W, V))
if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_out_ga2(W, V)) -> permute_2_out_ga2(._22(X, Y), ._22(U, V))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
permute_2_in_ga2([]_0, []_0) -> permute_2_out_ga2([]_0, []_0)
permute_2_in_ga2(._22(X, Y), ._22(U, V)) -> if_permute_2_in_1_ga5(X, Y, U, V, delete_3_in_aga3(U, ._22(X, Y), W))
delete_3_in_aga3(X, ._22(X, Y), Y) -> delete_3_out_aga3(X, ._22(X, Y), Y)
delete_3_in_aga3(U, ._22(X, Y), ._22(X, Z)) -> if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_in_aga3(U, Y, Z))
if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_out_aga3(U, Y, Z)) -> delete_3_out_aga3(U, ._22(X, Y), ._22(X, Z))
if_permute_2_in_1_ga5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_in_ga2(W, V))
if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_out_ga2(W, V)) -> permute_2_out_ga2(._22(X, Y), ._22(U, V))
PERMUTE_2_IN_GA2(._22(X, Y), ._22(U, V)) -> IF_PERMUTE_2_IN_1_GA5(X, Y, U, V, delete_3_in_aga3(U, ._22(X, Y), W))
PERMUTE_2_IN_GA2(._22(X, Y), ._22(U, V)) -> DELETE_3_IN_AGA3(U, ._22(X, Y), W)
DELETE_3_IN_AGA3(U, ._22(X, Y), ._22(X, Z)) -> IF_DELETE_3_IN_1_AGA5(U, X, Y, Z, delete_3_in_aga3(U, Y, Z))
DELETE_3_IN_AGA3(U, ._22(X, Y), ._22(X, Z)) -> DELETE_3_IN_AGA3(U, Y, Z)
IF_PERMUTE_2_IN_1_GA5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> IF_PERMUTE_2_IN_2_GA6(X, Y, U, V, W, permute_2_in_ga2(W, V))
IF_PERMUTE_2_IN_1_GA5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> PERMUTE_2_IN_GA2(W, V)
permute_2_in_ga2([]_0, []_0) -> permute_2_out_ga2([]_0, []_0)
permute_2_in_ga2(._22(X, Y), ._22(U, V)) -> if_permute_2_in_1_ga5(X, Y, U, V, delete_3_in_aga3(U, ._22(X, Y), W))
delete_3_in_aga3(X, ._22(X, Y), Y) -> delete_3_out_aga3(X, ._22(X, Y), Y)
delete_3_in_aga3(U, ._22(X, Y), ._22(X, Z)) -> if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_in_aga3(U, Y, Z))
if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_out_aga3(U, Y, Z)) -> delete_3_out_aga3(U, ._22(X, Y), ._22(X, Z))
if_permute_2_in_1_ga5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_in_ga2(W, V))
if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_out_ga2(W, V)) -> permute_2_out_ga2(._22(X, Y), ._22(U, V))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
PERMUTE_2_IN_GA2(._22(X, Y), ._22(U, V)) -> IF_PERMUTE_2_IN_1_GA5(X, Y, U, V, delete_3_in_aga3(U, ._22(X, Y), W))
PERMUTE_2_IN_GA2(._22(X, Y), ._22(U, V)) -> DELETE_3_IN_AGA3(U, ._22(X, Y), W)
DELETE_3_IN_AGA3(U, ._22(X, Y), ._22(X, Z)) -> IF_DELETE_3_IN_1_AGA5(U, X, Y, Z, delete_3_in_aga3(U, Y, Z))
DELETE_3_IN_AGA3(U, ._22(X, Y), ._22(X, Z)) -> DELETE_3_IN_AGA3(U, Y, Z)
IF_PERMUTE_2_IN_1_GA5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> IF_PERMUTE_2_IN_2_GA6(X, Y, U, V, W, permute_2_in_ga2(W, V))
IF_PERMUTE_2_IN_1_GA5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> PERMUTE_2_IN_GA2(W, V)
permute_2_in_ga2([]_0, []_0) -> permute_2_out_ga2([]_0, []_0)
permute_2_in_ga2(._22(X, Y), ._22(U, V)) -> if_permute_2_in_1_ga5(X, Y, U, V, delete_3_in_aga3(U, ._22(X, Y), W))
delete_3_in_aga3(X, ._22(X, Y), Y) -> delete_3_out_aga3(X, ._22(X, Y), Y)
delete_3_in_aga3(U, ._22(X, Y), ._22(X, Z)) -> if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_in_aga3(U, Y, Z))
if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_out_aga3(U, Y, Z)) -> delete_3_out_aga3(U, ._22(X, Y), ._22(X, Z))
if_permute_2_in_1_ga5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_in_ga2(W, V))
if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_out_ga2(W, V)) -> permute_2_out_ga2(._22(X, Y), ._22(U, V))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
DELETE_3_IN_AGA3(U, ._22(X, Y), ._22(X, Z)) -> DELETE_3_IN_AGA3(U, Y, Z)
permute_2_in_ga2([]_0, []_0) -> permute_2_out_ga2([]_0, []_0)
permute_2_in_ga2(._22(X, Y), ._22(U, V)) -> if_permute_2_in_1_ga5(X, Y, U, V, delete_3_in_aga3(U, ._22(X, Y), W))
delete_3_in_aga3(X, ._22(X, Y), Y) -> delete_3_out_aga3(X, ._22(X, Y), Y)
delete_3_in_aga3(U, ._22(X, Y), ._22(X, Z)) -> if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_in_aga3(U, Y, Z))
if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_out_aga3(U, Y, Z)) -> delete_3_out_aga3(U, ._22(X, Y), ._22(X, Z))
if_permute_2_in_1_ga5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_in_ga2(W, V))
if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_out_ga2(W, V)) -> permute_2_out_ga2(._22(X, Y), ._22(U, V))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
DELETE_3_IN_AGA3(U, ._22(X, Y), ._22(X, Z)) -> DELETE_3_IN_AGA3(U, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
DELETE_3_IN_AGA1(._22(X, Y)) -> DELETE_3_IN_AGA1(Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_PERMUTE_2_IN_1_GA5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> PERMUTE_2_IN_GA2(W, V)
PERMUTE_2_IN_GA2(._22(X, Y), ._22(U, V)) -> IF_PERMUTE_2_IN_1_GA5(X, Y, U, V, delete_3_in_aga3(U, ._22(X, Y), W))
permute_2_in_ga2([]_0, []_0) -> permute_2_out_ga2([]_0, []_0)
permute_2_in_ga2(._22(X, Y), ._22(U, V)) -> if_permute_2_in_1_ga5(X, Y, U, V, delete_3_in_aga3(U, ._22(X, Y), W))
delete_3_in_aga3(X, ._22(X, Y), Y) -> delete_3_out_aga3(X, ._22(X, Y), Y)
delete_3_in_aga3(U, ._22(X, Y), ._22(X, Z)) -> if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_in_aga3(U, Y, Z))
if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_out_aga3(U, Y, Z)) -> delete_3_out_aga3(U, ._22(X, Y), ._22(X, Z))
if_permute_2_in_1_ga5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_in_ga2(W, V))
if_permute_2_in_2_ga6(X, Y, U, V, W, permute_2_out_ga2(W, V)) -> permute_2_out_ga2(._22(X, Y), ._22(U, V))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_PERMUTE_2_IN_1_GA5(X, Y, U, V, delete_3_out_aga3(U, ._22(X, Y), W)) -> PERMUTE_2_IN_GA2(W, V)
PERMUTE_2_IN_GA2(._22(X, Y), ._22(U, V)) -> IF_PERMUTE_2_IN_1_GA5(X, Y, U, V, delete_3_in_aga3(U, ._22(X, Y), W))
delete_3_in_aga3(X, ._22(X, Y), Y) -> delete_3_out_aga3(X, ._22(X, Y), Y)
delete_3_in_aga3(U, ._22(X, Y), ._22(X, Z)) -> if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_in_aga3(U, Y, Z))
if_delete_3_in_1_aga5(U, X, Y, Z, delete_3_out_aga3(U, Y, Z)) -> delete_3_out_aga3(U, ._22(X, Y), ._22(X, Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
IF_PERMUTE_2_IN_1_GA1(delete_3_out_aga2(U, W)) -> PERMUTE_2_IN_GA1(W)
PERMUTE_2_IN_GA1(._22(X, Y)) -> IF_PERMUTE_2_IN_1_GA1(delete_3_in_aga1(._22(X, Y)))
delete_3_in_aga1(._22(X, Y)) -> delete_3_out_aga2(X, Y)
delete_3_in_aga1(._22(X, Y)) -> if_delete_3_in_1_aga2(X, delete_3_in_aga1(Y))
if_delete_3_in_1_aga2(X, delete_3_out_aga2(U, Z)) -> delete_3_out_aga2(U, ._22(X, Z))
delete_3_in_aga1(x0)
if_delete_3_in_1_aga2(x0, x1)
Order:Polynomial interpretation:
POL(._22(x1, x2)) = 1 + x2
POL(if_delete_3_in_1_aga2(x1, x2)) = 1 + x2
POL(delete_3_in_aga1(x1)) = x1
POL(delete_3_out_aga2(x1, x2)) = 1 + x2
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules.
if_delete_3_in_1_aga2(X, delete_3_out_aga2(U, Z)) -> delete_3_out_aga2(U, ._22(X, Z))
delete_3_in_aga1(._22(X, Y)) -> if_delete_3_in_1_aga2(X, delete_3_in_aga1(Y))
delete_3_in_aga1(._22(X, Y)) -> delete_3_out_aga2(X, Y)