Left Termination of the query pattern subset1(f,b) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ UnrequestedClauseRemoverProof

member2(X, .2(Y, Xs)) :- member2(X, Xs).
member2(X, .2(X, Xs)).
subset2(.2(X, Xs), Ys) :- member2(X, Ys), subset2(Xs, Ys).
subset2({}0, Ys).
member12(X, .2(Y, Xs)) :- member12(X, Xs).
member12(X, .2(X, Xs)).
subset12(.2(X, Xs), Ys) :- member12(X, Ys), subset12(Xs, Ys).
subset12({}0, Ys).


The clauses

member2(X, .2(Y, Xs)) :- member2(X, Xs).
member2(X, .2(X, Xs)).
subset2(.2(X, Xs), Ys) :- member2(X, Ys), subset2(Xs, Ys).
subset2({}0, Ys).

can be ignored, as they are not needed by any of the given querys.

Deleting these clauses results in the following prolog program:

member12(X, .2(Y, Xs)) :- member12(X, Xs).
member12(X, .2(X, Xs)).
subset12(.2(X, Xs), Ys) :- member12(X, Ys), subset12(Xs, Ys).
subset12({}0, Ys).



↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
PROLOG
      ↳ PrologToPiTRSProof
      ↳ PrologToPiTRSProof

member12(X, .2(Y, Xs)) :- member12(X, Xs).
member12(X, .2(X, Xs)).
subset12(.2(X, Xs), Ys) :- member12(X, Ys), subset12(Xs, Ys).
subset12({}0, Ys).


With regard to the inferred argument filtering the predicates were used in the following modes:
subset12: (f,b)
member12: (f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag1(x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag1(x1)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag2(x1, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag1(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
PiTRS
          ↳ DependencyPairsProof
      ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag1(x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag1(x1)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag2(x1, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag1(x1)


Pi DP problem:
The TRS P consists of the following rules:

SUBSET1_2_IN_AG2(._22(X, Xs), Ys) -> IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
SUBSET1_2_IN_AG2(._22(X, Xs), Ys) -> MEMBER1_2_IN_AG2(X, Ys)
MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> IF_MEMBER1_2_IN_1_AG4(X, Y, Xs, member1_2_in_ag2(X, Xs))
MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> MEMBER1_2_IN_AG2(X, Xs)
IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> IF_SUBSET1_2_IN_2_AG4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> SUBSET1_2_IN_AG2(Xs, Ys)

The TRS R consists of the following rules:

subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag1(x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag1(x1)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag2(x1, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag1(x1)
SUBSET1_2_IN_AG2(x1, x2)  =  SUBSET1_2_IN_AG1(x2)
MEMBER1_2_IN_AG2(x1, x2)  =  MEMBER1_2_IN_AG1(x2)
IF_MEMBER1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_MEMBER1_2_IN_1_AG1(x4)
IF_SUBSET1_2_IN_2_AG4(x1, x2, x3, x4)  =  IF_SUBSET1_2_IN_2_AG2(x1, x4)
IF_SUBSET1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_SUBSET1_2_IN_1_AG2(x3, x4)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
PiDP
              ↳ DependencyGraphProof
      ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

SUBSET1_2_IN_AG2(._22(X, Xs), Ys) -> IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
SUBSET1_2_IN_AG2(._22(X, Xs), Ys) -> MEMBER1_2_IN_AG2(X, Ys)
MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> IF_MEMBER1_2_IN_1_AG4(X, Y, Xs, member1_2_in_ag2(X, Xs))
MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> MEMBER1_2_IN_AG2(X, Xs)
IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> IF_SUBSET1_2_IN_2_AG4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> SUBSET1_2_IN_AG2(Xs, Ys)

The TRS R consists of the following rules:

subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag1(x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag1(x1)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag2(x1, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag1(x1)
SUBSET1_2_IN_AG2(x1, x2)  =  SUBSET1_2_IN_AG1(x2)
MEMBER1_2_IN_AG2(x1, x2)  =  MEMBER1_2_IN_AG1(x2)
IF_MEMBER1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_MEMBER1_2_IN_1_AG1(x4)
IF_SUBSET1_2_IN_2_AG4(x1, x2, x3, x4)  =  IF_SUBSET1_2_IN_2_AG2(x1, x4)
IF_SUBSET1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_SUBSET1_2_IN_1_AG2(x3, x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
                ↳ AND
PiDP
                    ↳ UsableRulesProof
                  ↳ PiDP
      ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> MEMBER1_2_IN_AG2(X, Xs)

The TRS R consists of the following rules:

subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag1(x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag1(x1)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag2(x1, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag1(x1)
MEMBER1_2_IN_AG2(x1, x2)  =  MEMBER1_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ PiDP
                    ↳ UsableRulesProof
PiDP
                        ↳ PiDPToQDPProof
                  ↳ PiDP
      ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> MEMBER1_2_IN_AG2(X, Xs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
MEMBER1_2_IN_AG2(x1, x2)  =  MEMBER1_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ PiDP
                    ↳ UsableRulesProof
                      ↳ PiDP
                        ↳ PiDPToQDPProof
QDP
                            ↳ QDPSizeChangeProof
                  ↳ PiDP
      ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

MEMBER1_2_IN_AG1(._22(Y, Xs)) -> MEMBER1_2_IN_AG1(Xs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {MEMBER1_2_IN_AG1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ PiDP
PiDP
                    ↳ UsableRulesProof
      ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

SUBSET1_2_IN_AG2(._22(X, Xs), Ys) -> IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> SUBSET1_2_IN_AG2(Xs, Ys)

The TRS R consists of the following rules:

subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag1(x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag1(x1)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag2(x1, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag1(x1)
SUBSET1_2_IN_AG2(x1, x2)  =  SUBSET1_2_IN_AG1(x2)
IF_SUBSET1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_SUBSET1_2_IN_1_AG2(x3, x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ PiDP
                  ↳ PiDP
                    ↳ UsableRulesProof
PiDP
                        ↳ PiDPToQDPProof
      ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

SUBSET1_2_IN_AG2(._22(X, Xs), Ys) -> IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> SUBSET1_2_IN_AG2(Xs, Ys)

The TRS R consists of the following rules:

member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))

The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag1(x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag1(x1)
SUBSET1_2_IN_AG2(x1, x2)  =  SUBSET1_2_IN_AG1(x2)
IF_SUBSET1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_SUBSET1_2_IN_1_AG2(x3, x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ PiDP
                  ↳ PiDP
                    ↳ UsableRulesProof
                      ↳ PiDP
                        ↳ PiDPToQDPProof
QDP
      ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

SUBSET1_2_IN_AG1(Ys) -> IF_SUBSET1_2_IN_1_AG2(Ys, member1_2_in_ag1(Ys))
IF_SUBSET1_2_IN_1_AG2(Ys, member1_2_out_ag1(X)) -> SUBSET1_2_IN_AG1(Ys)

The TRS R consists of the following rules:

member1_2_in_ag1(._22(Y, Xs)) -> if_member1_2_in_1_ag1(member1_2_in_ag1(Xs))
member1_2_in_ag1(._22(X, Xs)) -> member1_2_out_ag1(X)
if_member1_2_in_1_ag1(member1_2_out_ag1(X)) -> member1_2_out_ag1(X)

The set Q consists of the following terms:

member1_2_in_ag1(x0)
if_member1_2_in_1_ag1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_SUBSET1_2_IN_1_AG2, SUBSET1_2_IN_AG1}.
With regard to the inferred argument filtering the predicates were used in the following modes:
subset12: (f,b)
member12: (f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag3(x2, x3, x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag2(x1, x2)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag3(x1, x3, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag2(x1, x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
      ↳ PrologToPiTRSProof
PiTRS
          ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag3(x2, x3, x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag2(x1, x2)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag3(x1, x3, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag2(x1, x2)


Pi DP problem:
The TRS P consists of the following rules:

SUBSET1_2_IN_AG2(._22(X, Xs), Ys) -> IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
SUBSET1_2_IN_AG2(._22(X, Xs), Ys) -> MEMBER1_2_IN_AG2(X, Ys)
MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> IF_MEMBER1_2_IN_1_AG4(X, Y, Xs, member1_2_in_ag2(X, Xs))
MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> MEMBER1_2_IN_AG2(X, Xs)
IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> IF_SUBSET1_2_IN_2_AG4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> SUBSET1_2_IN_AG2(Xs, Ys)

The TRS R consists of the following rules:

subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag3(x2, x3, x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag2(x1, x2)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag3(x1, x3, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag2(x1, x2)
SUBSET1_2_IN_AG2(x1, x2)  =  SUBSET1_2_IN_AG1(x2)
MEMBER1_2_IN_AG2(x1, x2)  =  MEMBER1_2_IN_AG1(x2)
IF_MEMBER1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_MEMBER1_2_IN_1_AG3(x2, x3, x4)
IF_SUBSET1_2_IN_2_AG4(x1, x2, x3, x4)  =  IF_SUBSET1_2_IN_2_AG3(x1, x3, x4)
IF_SUBSET1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_SUBSET1_2_IN_1_AG2(x3, x4)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
PiDP
              ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

SUBSET1_2_IN_AG2(._22(X, Xs), Ys) -> IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
SUBSET1_2_IN_AG2(._22(X, Xs), Ys) -> MEMBER1_2_IN_AG2(X, Ys)
MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> IF_MEMBER1_2_IN_1_AG4(X, Y, Xs, member1_2_in_ag2(X, Xs))
MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> MEMBER1_2_IN_AG2(X, Xs)
IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> IF_SUBSET1_2_IN_2_AG4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> SUBSET1_2_IN_AG2(Xs, Ys)

The TRS R consists of the following rules:

subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag3(x2, x3, x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag2(x1, x2)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag3(x1, x3, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag2(x1, x2)
SUBSET1_2_IN_AG2(x1, x2)  =  SUBSET1_2_IN_AG1(x2)
MEMBER1_2_IN_AG2(x1, x2)  =  MEMBER1_2_IN_AG1(x2)
IF_MEMBER1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_MEMBER1_2_IN_1_AG3(x2, x3, x4)
IF_SUBSET1_2_IN_2_AG4(x1, x2, x3, x4)  =  IF_SUBSET1_2_IN_2_AG3(x1, x3, x4)
IF_SUBSET1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_SUBSET1_2_IN_1_AG2(x3, x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
                ↳ AND
PiDP
                    ↳ UsableRulesProof
                  ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> MEMBER1_2_IN_AG2(X, Xs)

The TRS R consists of the following rules:

subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag3(x2, x3, x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag2(x1, x2)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag3(x1, x3, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag2(x1, x2)
MEMBER1_2_IN_AG2(x1, x2)  =  MEMBER1_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ PiDP
                    ↳ UsableRulesProof
PiDP
                  ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

MEMBER1_2_IN_AG2(X, ._22(Y, Xs)) -> MEMBER1_2_IN_AG2(X, Xs)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
MEMBER1_2_IN_AG2(x1, x2)  =  MEMBER1_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ UnrequestedClauseRemoverProof
    ↳ PROLOG
      ↳ PrologToPiTRSProof
      ↳ PrologToPiTRSProof
        ↳ PiTRS
          ↳ DependencyPairsProof
            ↳ PiDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ PiDP
PiDP

Pi DP problem:
The TRS P consists of the following rules:

SUBSET1_2_IN_AG2(._22(X, Xs), Ys) -> IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
IF_SUBSET1_2_IN_1_AG4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> SUBSET1_2_IN_AG2(Xs, Ys)

The TRS R consists of the following rules:

subset1_2_in_ag2(._22(X, Xs), Ys) -> if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_in_ag2(X, Ys))
member1_2_in_ag2(X, ._22(Y, Xs)) -> if_member1_2_in_1_ag4(X, Y, Xs, member1_2_in_ag2(X, Xs))
member1_2_in_ag2(X, ._22(X, Xs)) -> member1_2_out_ag2(X, ._22(X, Xs))
if_member1_2_in_1_ag4(X, Y, Xs, member1_2_out_ag2(X, Xs)) -> member1_2_out_ag2(X, ._22(Y, Xs))
if_subset1_2_in_1_ag4(X, Xs, Ys, member1_2_out_ag2(X, Ys)) -> if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_in_ag2(Xs, Ys))
subset1_2_in_ag2([]_0, Ys) -> subset1_2_out_ag2([]_0, Ys)
if_subset1_2_in_2_ag4(X, Xs, Ys, subset1_2_out_ag2(Xs, Ys)) -> subset1_2_out_ag2(._22(X, Xs), Ys)

The argument filtering Pi contains the following mapping:
subset1_2_in_ag2(x1, x2)  =  subset1_2_in_ag1(x2)
._22(x1, x2)  =  ._22(x1, x2)
[]_0  =  []_0
if_subset1_2_in_1_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_1_ag2(x3, x4)
member1_2_in_ag2(x1, x2)  =  member1_2_in_ag1(x2)
if_member1_2_in_1_ag4(x1, x2, x3, x4)  =  if_member1_2_in_1_ag3(x2, x3, x4)
member1_2_out_ag2(x1, x2)  =  member1_2_out_ag2(x1, x2)
if_subset1_2_in_2_ag4(x1, x2, x3, x4)  =  if_subset1_2_in_2_ag3(x1, x3, x4)
subset1_2_out_ag2(x1, x2)  =  subset1_2_out_ag2(x1, x2)
SUBSET1_2_IN_AG2(x1, x2)  =  SUBSET1_2_IN_AG1(x2)
IF_SUBSET1_2_IN_1_AG4(x1, x2, x3, x4)  =  IF_SUBSET1_2_IN_1_AG2(x3, x4)

We have to consider all (P,R,Pi)-chains