Left Termination of the query pattern list(b) w.r.t. the given Prolog program could successfully be proven:
↳ PROLOG
↳ PrologToPiTRSProof
list1(.2(H, Ts)) :- list1(Ts).
list1({}0).
With regard to the inferred argument filtering the predicates were used in the following modes:
list1: (b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
list_1_in_g1(._22(H, Ts)) -> if_list_1_in_1_g3(H, Ts, list_1_in_g1(Ts))
list_1_in_g1([]_0) -> list_1_out_g1([]_0)
if_list_1_in_1_g3(H, Ts, list_1_out_g1(Ts)) -> list_1_out_g1(._22(H, Ts))
The argument filtering Pi contains the following mapping:
list_1_in_g1(x1) = list_1_in_g1(x1)
._22(x1, x2) = ._22(x1, x2)
[]_0 = []_0
if_list_1_in_1_g3(x1, x2, x3) = if_list_1_in_1_g1(x3)
list_1_out_g1(x1) = list_1_out_g
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
list_1_in_g1(._22(H, Ts)) -> if_list_1_in_1_g3(H, Ts, list_1_in_g1(Ts))
list_1_in_g1([]_0) -> list_1_out_g1([]_0)
if_list_1_in_1_g3(H, Ts, list_1_out_g1(Ts)) -> list_1_out_g1(._22(H, Ts))
The argument filtering Pi contains the following mapping:
list_1_in_g1(x1) = list_1_in_g1(x1)
._22(x1, x2) = ._22(x1, x2)
[]_0 = []_0
if_list_1_in_1_g3(x1, x2, x3) = if_list_1_in_1_g1(x3)
list_1_out_g1(x1) = list_1_out_g
Pi DP problem:
The TRS P consists of the following rules:
LIST_1_IN_G1(._22(H, Ts)) -> IF_LIST_1_IN_1_G3(H, Ts, list_1_in_g1(Ts))
LIST_1_IN_G1(._22(H, Ts)) -> LIST_1_IN_G1(Ts)
The TRS R consists of the following rules:
list_1_in_g1(._22(H, Ts)) -> if_list_1_in_1_g3(H, Ts, list_1_in_g1(Ts))
list_1_in_g1([]_0) -> list_1_out_g1([]_0)
if_list_1_in_1_g3(H, Ts, list_1_out_g1(Ts)) -> list_1_out_g1(._22(H, Ts))
The argument filtering Pi contains the following mapping:
list_1_in_g1(x1) = list_1_in_g1(x1)
._22(x1, x2) = ._22(x1, x2)
[]_0 = []_0
if_list_1_in_1_g3(x1, x2, x3) = if_list_1_in_1_g1(x3)
list_1_out_g1(x1) = list_1_out_g
IF_LIST_1_IN_1_G3(x1, x2, x3) = IF_LIST_1_IN_1_G1(x3)
LIST_1_IN_G1(x1) = LIST_1_IN_G1(x1)
We have to consider all (P,R,Pi)-chains
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
LIST_1_IN_G1(._22(H, Ts)) -> IF_LIST_1_IN_1_G3(H, Ts, list_1_in_g1(Ts))
LIST_1_IN_G1(._22(H, Ts)) -> LIST_1_IN_G1(Ts)
The TRS R consists of the following rules:
list_1_in_g1(._22(H, Ts)) -> if_list_1_in_1_g3(H, Ts, list_1_in_g1(Ts))
list_1_in_g1([]_0) -> list_1_out_g1([]_0)
if_list_1_in_1_g3(H, Ts, list_1_out_g1(Ts)) -> list_1_out_g1(._22(H, Ts))
The argument filtering Pi contains the following mapping:
list_1_in_g1(x1) = list_1_in_g1(x1)
._22(x1, x2) = ._22(x1, x2)
[]_0 = []_0
if_list_1_in_1_g3(x1, x2, x3) = if_list_1_in_1_g1(x3)
list_1_out_g1(x1) = list_1_out_g
IF_LIST_1_IN_1_G3(x1, x2, x3) = IF_LIST_1_IN_1_G1(x3)
LIST_1_IN_G1(x1) = LIST_1_IN_G1(x1)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 1 less node.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
LIST_1_IN_G1(._22(H, Ts)) -> LIST_1_IN_G1(Ts)
The TRS R consists of the following rules:
list_1_in_g1(._22(H, Ts)) -> if_list_1_in_1_g3(H, Ts, list_1_in_g1(Ts))
list_1_in_g1([]_0) -> list_1_out_g1([]_0)
if_list_1_in_1_g3(H, Ts, list_1_out_g1(Ts)) -> list_1_out_g1(._22(H, Ts))
The argument filtering Pi contains the following mapping:
list_1_in_g1(x1) = list_1_in_g1(x1)
._22(x1, x2) = ._22(x1, x2)
[]_0 = []_0
if_list_1_in_1_g3(x1, x2, x3) = if_list_1_in_1_g1(x3)
list_1_out_g1(x1) = list_1_out_g
LIST_1_IN_G1(x1) = LIST_1_IN_G1(x1)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
LIST_1_IN_G1(._22(H, Ts)) -> LIST_1_IN_G1(Ts)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
LIST_1_IN_G1(._22(H, Ts)) -> LIST_1_IN_G1(Ts)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LIST_1_IN_G1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- LIST_1_IN_G1(._22(H, Ts)) -> LIST_1_IN_G1(Ts)
The graph contains the following edges 1 > 1