Left Termination of the query pattern log2(f,b) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

log22(X, Y) :- log24(X, 00, s1(00), Y).
log24(s12 (X), Half, Acc, Y) :- log24(X, s1(Half), Acc, Y).
log24(X, s12 (Half), Acc, Y) :- small1(X), log24(Half, s1(00), s1(Acc), Y).
log24(X, Half, Y, Y) :- small1(X), small1(Half).
small1(00).
small1(s1(00)).


With regard to the inferred argument filtering the predicates were used in the following modes:
log22: (f,b)
log24: (f,b,b,b) (b,b,b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg1(x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg2(x1, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg1(x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg4(x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg1(x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg2(x2, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg1(x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg1(x1)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg2(x2, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg2(x1, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg1(x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg2(x1, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg1(x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg4(x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg1(x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg2(x2, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg1(x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg1(x1)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg2(x2, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg2(x1, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)


Pi DP problem:
The TRS P consists of the following rules:

LOG2_2_IN_AG2(X, Y) -> IF_LOG2_2_IN_1_AG3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
LOG2_2_IN_AG2(X, Y) -> LOG2_4_IN_AGGG4(X, 0_0, s_11(0_0), Y)
LOG2_4_IN_AGGG4(s_11(s_11(X)), Half, Acc, Y) -> IF_LOG2_4_IN_1_AGGG5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
LOG2_4_IN_AGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_AGGG4(X, s_11(Half), Acc, Y)
LOG2_4_IN_AGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_in_a1(X))
LOG2_4_IN_AGGG4(X, s_11(s_11(Half)), Acc, Y) -> SMALL_1_IN_A1(X)
IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_out_a1(X)) -> IF_LOG2_4_IN_3_AGGG5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_out_a1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> IF_LOG2_4_IN_1_GGGG5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_GGGG4(X, s_11(Half), Acc, Y)
LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_in_g1(X))
LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> SMALL_1_IN_G1(X)
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> IF_LOG2_4_IN_3_GGGG5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(X, Half, Y, Y) -> IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_in_g1(X))
LOG2_4_IN_GGGG4(X, Half, Y, Y) -> SMALL_1_IN_G1(X)
IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_out_g1(X)) -> IF_LOG2_4_IN_5_GGGG4(X, Half, Y, small_1_in_g1(Half))
IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_out_g1(X)) -> SMALL_1_IN_G1(Half)
LOG2_4_IN_AGGG4(X, Half, Y, Y) -> IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_in_a1(X))
LOG2_4_IN_AGGG4(X, Half, Y, Y) -> SMALL_1_IN_A1(X)
IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_out_a1(X)) -> IF_LOG2_4_IN_5_AGGG4(X, Half, Y, small_1_in_g1(Half))
IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_out_a1(X)) -> SMALL_1_IN_G1(Half)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg1(x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg2(x1, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg1(x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg4(x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg1(x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg2(x2, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg1(x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg1(x1)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg2(x2, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg2(x1, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)
SMALL_1_IN_G1(x1)  =  SMALL_1_IN_G1(x1)
IF_LOG2_4_IN_2_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_2_GGGG4(x2, x3, x4, x5)
IF_LOG2_4_IN_1_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_1_AGGG1(x5)
LOG2_4_IN_GGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_GGGG4(x1, x2, x3, x4)
LOG2_2_IN_AG2(x1, x2)  =  LOG2_2_IN_AG1(x2)
IF_LOG2_4_IN_1_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_1_GGGG1(x5)
SMALL_1_IN_A1(x1)  =  SMALL_1_IN_A
LOG2_4_IN_AGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_AGGG3(x2, x3, x4)
IF_LOG2_4_IN_5_AGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_5_AGGG2(x1, x4)
IF_LOG2_4_IN_4_AGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_4_AGGG2(x2, x4)
IF_LOG2_2_IN_1_AG3(x1, x2, x3)  =  IF_LOG2_2_IN_1_AG1(x3)
IF_LOG2_4_IN_2_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_2_AGGG4(x2, x3, x4, x5)
IF_LOG2_4_IN_3_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_3_GGGG1(x5)
IF_LOG2_4_IN_4_GGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_4_GGGG2(x2, x4)
IF_LOG2_4_IN_3_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_3_AGGG2(x1, x5)
IF_LOG2_4_IN_5_GGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_5_GGGG1(x4)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LOG2_2_IN_AG2(X, Y) -> IF_LOG2_2_IN_1_AG3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
LOG2_2_IN_AG2(X, Y) -> LOG2_4_IN_AGGG4(X, 0_0, s_11(0_0), Y)
LOG2_4_IN_AGGG4(s_11(s_11(X)), Half, Acc, Y) -> IF_LOG2_4_IN_1_AGGG5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
LOG2_4_IN_AGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_AGGG4(X, s_11(Half), Acc, Y)
LOG2_4_IN_AGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_in_a1(X))
LOG2_4_IN_AGGG4(X, s_11(s_11(Half)), Acc, Y) -> SMALL_1_IN_A1(X)
IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_out_a1(X)) -> IF_LOG2_4_IN_3_AGGG5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_out_a1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> IF_LOG2_4_IN_1_GGGG5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_GGGG4(X, s_11(Half), Acc, Y)
LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_in_g1(X))
LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> SMALL_1_IN_G1(X)
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> IF_LOG2_4_IN_3_GGGG5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(X, Half, Y, Y) -> IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_in_g1(X))
LOG2_4_IN_GGGG4(X, Half, Y, Y) -> SMALL_1_IN_G1(X)
IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_out_g1(X)) -> IF_LOG2_4_IN_5_GGGG4(X, Half, Y, small_1_in_g1(Half))
IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_out_g1(X)) -> SMALL_1_IN_G1(Half)
LOG2_4_IN_AGGG4(X, Half, Y, Y) -> IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_in_a1(X))
LOG2_4_IN_AGGG4(X, Half, Y, Y) -> SMALL_1_IN_A1(X)
IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_out_a1(X)) -> IF_LOG2_4_IN_5_AGGG4(X, Half, Y, small_1_in_g1(Half))
IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_out_a1(X)) -> SMALL_1_IN_G1(Half)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg1(x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg2(x1, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg1(x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg4(x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg1(x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg2(x2, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg1(x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg1(x1)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg2(x2, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg2(x1, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)
SMALL_1_IN_G1(x1)  =  SMALL_1_IN_G1(x1)
IF_LOG2_4_IN_2_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_2_GGGG4(x2, x3, x4, x5)
IF_LOG2_4_IN_1_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_1_AGGG1(x5)
LOG2_4_IN_GGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_GGGG4(x1, x2, x3, x4)
LOG2_2_IN_AG2(x1, x2)  =  LOG2_2_IN_AG1(x2)
IF_LOG2_4_IN_1_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_1_GGGG1(x5)
SMALL_1_IN_A1(x1)  =  SMALL_1_IN_A
LOG2_4_IN_AGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_AGGG3(x2, x3, x4)
IF_LOG2_4_IN_5_AGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_5_AGGG2(x1, x4)
IF_LOG2_4_IN_4_AGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_4_AGGG2(x2, x4)
IF_LOG2_2_IN_1_AG3(x1, x2, x3)  =  IF_LOG2_2_IN_1_AG1(x3)
IF_LOG2_4_IN_2_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_2_AGGG4(x2, x3, x4, x5)
IF_LOG2_4_IN_3_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_3_GGGG1(x5)
IF_LOG2_4_IN_4_GGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_4_GGGG2(x2, x4)
IF_LOG2_4_IN_3_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_3_AGGG2(x1, x5)
IF_LOG2_4_IN_5_GGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_5_GGGG1(x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 18 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_in_g1(X))
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_GGGG4(X, s_11(Half), Acc, Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg1(x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg2(x1, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg1(x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg4(x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg1(x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg2(x2, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg1(x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg1(x1)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg2(x2, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg2(x1, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)
IF_LOG2_4_IN_2_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_2_GGGG4(x2, x3, x4, x5)
LOG2_4_IN_GGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_GGGG4(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_in_g1(X))
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_GGGG4(X, s_11(Half), Acc, Y)

The TRS R consists of the following rules:

small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))

The argument filtering Pi contains the following mapping:
0_0  =  0_0
s_11(x1)  =  s_11(x1)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g
IF_LOG2_4_IN_2_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_2_GGGG4(x2, x3, x4, x5)
LOG2_4_IN_GGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_GGGG4(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ RuleRemovalProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_GGGG4(Half, Acc, Y, small_1_in_g1(X))
IF_LOG2_4_IN_2_GGGG4(Half, Acc, Y, small_1_out_g) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_GGGG4(X, s_11(Half), Acc, Y)

The TRS R consists of the following rules:

small_1_in_g1(0_0) -> small_1_out_g
small_1_in_g1(s_11(0_0)) -> small_1_out_g

The set Q consists of the following terms:

small_1_in_g1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_LOG2_4_IN_2_GGGG4, LOG2_4_IN_GGGG4}.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

small_1_in_g1(0_0) -> small_1_out_g
small_1_in_g1(s_11(0_0)) -> small_1_out_g

Used ordering: POLO with Polynomial interpretation:

POL(small_1_in_g1(x1)) = 2 + x1   
POL(0_0) = 0   
POL(IF_LOG2_4_IN_2_GGGG4(x1, x2, x3, x4)) = 2 + x1 + x2 + x3 + x4   
POL(LOG2_4_IN_GGGG4(x1, x2, x3, x4)) = x1 + 2·x2 + x3 + x4   
POL(small_1_out_g) = 1   
POL(s_11(x1)) = 1 + x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ DependencyGraphProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_GGGG4(Half, Acc, Y, small_1_in_g1(X))
IF_LOG2_4_IN_2_GGGG4(Half, Acc, Y, small_1_out_g) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_GGGG4(X, s_11(Half), Acc, Y)

R is empty.
The set Q consists of the following terms:

small_1_in_g1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_LOG2_4_IN_2_GGGG4, LOG2_4_IN_GGGG4}.
The approximation of the Dependency Graph contains 1 SCC with 2 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ QDPSizeChangeProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_GGGG4(X, s_11(Half), Acc, Y)

R is empty.
The set Q consists of the following terms:

small_1_in_g1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LOG2_4_IN_GGGG4}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LOG2_4_IN_AGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_AGGG4(X, s_11(Half), Acc, Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg1(x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg2(x1, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg1(x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg4(x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg1(x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg2(x2, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg1(x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg1(x1)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg2(x2, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg2(x1, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)
LOG2_4_IN_AGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_AGGG3(x2, x3, x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LOG2_4_IN_AGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_AGGG4(X, s_11(Half), Acc, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
LOG2_4_IN_AGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_AGGG3(x2, x3, x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

LOG2_4_IN_AGGG3(Half, Acc, Y) -> LOG2_4_IN_AGGG3(s_11(Half), Acc, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LOG2_4_IN_AGGG3}.
With regard to the inferred argument filtering the predicates were used in the following modes:
log22: (f,b)
log24: (f,b,b,b) (b,b,b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg4(x2, x3, x4, x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g1(x1)
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg4(x1, x2, x3, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg4(x1, x2, x3, x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg4(x1, x2, x3, x4)
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg4(x1, x2, x3, x4)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg3(x2, x3, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg4(x1, x2, x3, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg4(x2, x3, x4, x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g1(x1)
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg4(x1, x2, x3, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg4(x1, x2, x3, x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg4(x1, x2, x3, x4)
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg4(x1, x2, x3, x4)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg3(x2, x3, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg4(x1, x2, x3, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)


Pi DP problem:
The TRS P consists of the following rules:

LOG2_2_IN_AG2(X, Y) -> IF_LOG2_2_IN_1_AG3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
LOG2_2_IN_AG2(X, Y) -> LOG2_4_IN_AGGG4(X, 0_0, s_11(0_0), Y)
LOG2_4_IN_AGGG4(s_11(s_11(X)), Half, Acc, Y) -> IF_LOG2_4_IN_1_AGGG5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
LOG2_4_IN_AGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_AGGG4(X, s_11(Half), Acc, Y)
LOG2_4_IN_AGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_in_a1(X))
LOG2_4_IN_AGGG4(X, s_11(s_11(Half)), Acc, Y) -> SMALL_1_IN_A1(X)
IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_out_a1(X)) -> IF_LOG2_4_IN_3_AGGG5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_out_a1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> IF_LOG2_4_IN_1_GGGG5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_GGGG4(X, s_11(Half), Acc, Y)
LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_in_g1(X))
LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> SMALL_1_IN_G1(X)
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> IF_LOG2_4_IN_3_GGGG5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(X, Half, Y, Y) -> IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_in_g1(X))
LOG2_4_IN_GGGG4(X, Half, Y, Y) -> SMALL_1_IN_G1(X)
IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_out_g1(X)) -> IF_LOG2_4_IN_5_GGGG4(X, Half, Y, small_1_in_g1(Half))
IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_out_g1(X)) -> SMALL_1_IN_G1(Half)
LOG2_4_IN_AGGG4(X, Half, Y, Y) -> IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_in_a1(X))
LOG2_4_IN_AGGG4(X, Half, Y, Y) -> SMALL_1_IN_A1(X)
IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_out_a1(X)) -> IF_LOG2_4_IN_5_AGGG4(X, Half, Y, small_1_in_g1(Half))
IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_out_a1(X)) -> SMALL_1_IN_G1(Half)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg4(x2, x3, x4, x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g1(x1)
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg4(x1, x2, x3, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg4(x1, x2, x3, x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg4(x1, x2, x3, x4)
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg4(x1, x2, x3, x4)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg3(x2, x3, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg4(x1, x2, x3, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)
SMALL_1_IN_G1(x1)  =  SMALL_1_IN_G1(x1)
IF_LOG2_4_IN_2_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_2_GGGG5(x1, x2, x3, x4, x5)
IF_LOG2_4_IN_1_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_1_AGGG4(x2, x3, x4, x5)
LOG2_4_IN_GGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_GGGG4(x1, x2, x3, x4)
LOG2_2_IN_AG2(x1, x2)  =  LOG2_2_IN_AG1(x2)
IF_LOG2_4_IN_1_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_1_GGGG5(x1, x2, x3, x4, x5)
SMALL_1_IN_A1(x1)  =  SMALL_1_IN_A
LOG2_4_IN_AGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_AGGG3(x2, x3, x4)
IF_LOG2_4_IN_5_AGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_5_AGGG4(x1, x2, x3, x4)
IF_LOG2_4_IN_4_AGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_4_AGGG3(x2, x3, x4)
IF_LOG2_2_IN_1_AG3(x1, x2, x3)  =  IF_LOG2_2_IN_1_AG2(x2, x3)
IF_LOG2_4_IN_2_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_2_AGGG4(x2, x3, x4, x5)
IF_LOG2_4_IN_3_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_3_GGGG5(x1, x2, x3, x4, x5)
IF_LOG2_4_IN_4_GGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_4_GGGG4(x1, x2, x3, x4)
IF_LOG2_4_IN_3_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_3_AGGG5(x1, x2, x3, x4, x5)
IF_LOG2_4_IN_5_GGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_5_GGGG4(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

LOG2_2_IN_AG2(X, Y) -> IF_LOG2_2_IN_1_AG3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
LOG2_2_IN_AG2(X, Y) -> LOG2_4_IN_AGGG4(X, 0_0, s_11(0_0), Y)
LOG2_4_IN_AGGG4(s_11(s_11(X)), Half, Acc, Y) -> IF_LOG2_4_IN_1_AGGG5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
LOG2_4_IN_AGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_AGGG4(X, s_11(Half), Acc, Y)
LOG2_4_IN_AGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_in_a1(X))
LOG2_4_IN_AGGG4(X, s_11(s_11(Half)), Acc, Y) -> SMALL_1_IN_A1(X)
IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_out_a1(X)) -> IF_LOG2_4_IN_3_AGGG5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
IF_LOG2_4_IN_2_AGGG5(X, Half, Acc, Y, small_1_out_a1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> IF_LOG2_4_IN_1_GGGG5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_GGGG4(X, s_11(Half), Acc, Y)
LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_in_g1(X))
LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> SMALL_1_IN_G1(X)
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> IF_LOG2_4_IN_3_GGGG5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(X, Half, Y, Y) -> IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_in_g1(X))
LOG2_4_IN_GGGG4(X, Half, Y, Y) -> SMALL_1_IN_G1(X)
IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_out_g1(X)) -> IF_LOG2_4_IN_5_GGGG4(X, Half, Y, small_1_in_g1(Half))
IF_LOG2_4_IN_4_GGGG4(X, Half, Y, small_1_out_g1(X)) -> SMALL_1_IN_G1(Half)
LOG2_4_IN_AGGG4(X, Half, Y, Y) -> IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_in_a1(X))
LOG2_4_IN_AGGG4(X, Half, Y, Y) -> SMALL_1_IN_A1(X)
IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_out_a1(X)) -> IF_LOG2_4_IN_5_AGGG4(X, Half, Y, small_1_in_g1(Half))
IF_LOG2_4_IN_4_AGGG4(X, Half, Y, small_1_out_a1(X)) -> SMALL_1_IN_G1(Half)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg4(x2, x3, x4, x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g1(x1)
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg4(x1, x2, x3, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg4(x1, x2, x3, x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg4(x1, x2, x3, x4)
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg4(x1, x2, x3, x4)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg3(x2, x3, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg4(x1, x2, x3, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)
SMALL_1_IN_G1(x1)  =  SMALL_1_IN_G1(x1)
IF_LOG2_4_IN_2_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_2_GGGG5(x1, x2, x3, x4, x5)
IF_LOG2_4_IN_1_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_1_AGGG4(x2, x3, x4, x5)
LOG2_4_IN_GGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_GGGG4(x1, x2, x3, x4)
LOG2_2_IN_AG2(x1, x2)  =  LOG2_2_IN_AG1(x2)
IF_LOG2_4_IN_1_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_1_GGGG5(x1, x2, x3, x4, x5)
SMALL_1_IN_A1(x1)  =  SMALL_1_IN_A
LOG2_4_IN_AGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_AGGG3(x2, x3, x4)
IF_LOG2_4_IN_5_AGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_5_AGGG4(x1, x2, x3, x4)
IF_LOG2_4_IN_4_AGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_4_AGGG3(x2, x3, x4)
IF_LOG2_2_IN_1_AG3(x1, x2, x3)  =  IF_LOG2_2_IN_1_AG2(x2, x3)
IF_LOG2_4_IN_2_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_2_AGGG4(x2, x3, x4, x5)
IF_LOG2_4_IN_3_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_3_GGGG5(x1, x2, x3, x4, x5)
IF_LOG2_4_IN_4_GGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_4_GGGG4(x1, x2, x3, x4)
IF_LOG2_4_IN_3_AGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_3_AGGG5(x1, x2, x3, x4, x5)
IF_LOG2_4_IN_5_GGGG4(x1, x2, x3, x4)  =  IF_LOG2_4_IN_5_GGGG4(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 18 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_in_g1(X))
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_GGGG4(X, s_11(Half), Acc, Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg4(x2, x3, x4, x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g1(x1)
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg4(x1, x2, x3, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg4(x1, x2, x3, x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg4(x1, x2, x3, x4)
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg4(x1, x2, x3, x4)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg3(x2, x3, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg4(x1, x2, x3, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)
IF_LOG2_4_IN_2_GGGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_4_IN_2_GGGG5(x1, x2, x3, x4, x5)
LOG2_4_IN_GGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_GGGG4(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

LOG2_4_IN_GGGG4(X, s_11(s_11(Half)), Acc, Y) -> IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_in_g1(X))
IF_LOG2_4_IN_2_GGGG5(X, Half, Acc, Y, small_1_out_g1(X)) -> LOG2_4_IN_GGGG4(Half, s_11(0_0), s_11(Acc), Y)
LOG2_4_IN_GGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_GGGG4(X, s_11(Half), Acc, Y)

The TRS R consists of the following rules:

small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))

Pi is empty.
We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP

Pi DP problem:
The TRS P consists of the following rules:

LOG2_4_IN_AGGG4(s_11(s_11(X)), Half, Acc, Y) -> LOG2_4_IN_AGGG4(X, s_11(Half), Acc, Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_4_in_aggg4(X, 0_0, s_11(0_0), Y))
log2_4_in_aggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_in_aggg4(X, s_11(Half), Acc, Y))
log2_4_in_aggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_in_a1(X))
small_1_in_a1(0_0) -> small_1_out_a1(0_0)
small_1_in_a1(s_11(0_0)) -> small_1_out_a1(s_11(0_0))
if_log2_4_in_2_aggg5(X, Half, Acc, Y, small_1_out_a1(X)) -> if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(s_11(s_11(X)), Half, Acc, Y) -> if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(X, s_11(Half), Acc, Y))
log2_4_in_gggg4(X, s_11(s_11(Half)), Acc, Y) -> if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_in_g1(X))
small_1_in_g1(0_0) -> small_1_out_g1(0_0)
small_1_in_g1(s_11(0_0)) -> small_1_out_g1(s_11(0_0))
if_log2_4_in_2_gggg5(X, Half, Acc, Y, small_1_out_g1(X)) -> if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_in_gggg4(Half, s_11(0_0), s_11(Acc), Y))
log2_4_in_gggg4(X, Half, Y, Y) -> if_log2_4_in_4_gggg4(X, Half, Y, small_1_in_g1(X))
if_log2_4_in_4_gggg4(X, Half, Y, small_1_out_g1(X)) -> if_log2_4_in_5_gggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_gggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_gggg4(X, Half, Y, Y)
if_log2_4_in_3_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_gggg4(X, s_11(s_11(Half)), Acc, Y)
if_log2_4_in_1_gggg5(X, Half, Acc, Y, log2_4_out_gggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_gggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_4_in_3_aggg5(X, Half, Acc, Y, log2_4_out_gggg4(Half, s_11(0_0), s_11(Acc), Y)) -> log2_4_out_aggg4(X, s_11(s_11(Half)), Acc, Y)
log2_4_in_aggg4(X, Half, Y, Y) -> if_log2_4_in_4_aggg4(X, Half, Y, small_1_in_a1(X))
if_log2_4_in_4_aggg4(X, Half, Y, small_1_out_a1(X)) -> if_log2_4_in_5_aggg4(X, Half, Y, small_1_in_g1(Half))
if_log2_4_in_5_aggg4(X, Half, Y, small_1_out_g1(Half)) -> log2_4_out_aggg4(X, Half, Y, Y)
if_log2_4_in_1_aggg5(X, Half, Acc, Y, log2_4_out_aggg4(X, s_11(Half), Acc, Y)) -> log2_4_out_aggg4(s_11(s_11(X)), Half, Acc, Y)
if_log2_2_in_1_ag3(X, Y, log2_4_out_aggg4(X, 0_0, s_11(0_0), Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_4_in_aggg4(x1, x2, x3, x4)  =  log2_4_in_aggg3(x2, x3, x4)
if_log2_4_in_1_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_aggg4(x2, x3, x4, x5)
if_log2_4_in_2_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_aggg4(x2, x3, x4, x5)
small_1_in_a1(x1)  =  small_1_in_a
small_1_out_a1(x1)  =  small_1_out_a1(x1)
if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_aggg5(x1, x2, x3, x4, x5)
log2_4_in_gggg4(x1, x2, x3, x4)  =  log2_4_in_gggg4(x1, x2, x3, x4)
if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_1_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_2_gggg5(x1, x2, x3, x4, x5)
small_1_in_g1(x1)  =  small_1_in_g1(x1)
small_1_out_g1(x1)  =  small_1_out_g1(x1)
if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)  =  if_log2_4_in_3_gggg5(x1, x2, x3, x4, x5)
if_log2_4_in_4_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_gggg4(x1, x2, x3, x4)
if_log2_4_in_5_gggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_gggg4(x1, x2, x3, x4)
log2_4_out_gggg4(x1, x2, x3, x4)  =  log2_4_out_gggg4(x1, x2, x3, x4)
log2_4_out_aggg4(x1, x2, x3, x4)  =  log2_4_out_aggg4(x1, x2, x3, x4)
if_log2_4_in_4_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_4_aggg3(x2, x3, x4)
if_log2_4_in_5_aggg4(x1, x2, x3, x4)  =  if_log2_4_in_5_aggg4(x1, x2, x3, x4)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)
LOG2_4_IN_AGGG4(x1, x2, x3, x4)  =  LOG2_4_IN_AGGG3(x2, x3, x4)

We have to consider all (P,R,Pi)-chains