↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
log22: (b,f)
log23: (b,b,f)
half2: (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)
LOG2_2_IN_GA2(X, Y) -> IF_LOG2_2_IN_1_GA3(X, Y, log2_3_in_gga3(X, 0_0, Y))
LOG2_2_IN_GA2(X, Y) -> LOG2_3_IN_GGA3(X, 0_0, Y)
LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> HALF_2_IN_GA2(s_11(s_11(X)), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_GGA5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGA3(X1, s_11(I), Y)
log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
LOG2_2_IN_GA2(X, Y) -> IF_LOG2_2_IN_1_GA3(X, Y, log2_3_in_gga3(X, 0_0, Y))
LOG2_2_IN_GA2(X, Y) -> LOG2_3_IN_GGA3(X, 0_0, Y)
LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> HALF_2_IN_GA2(s_11(s_11(X)), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_GGA5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGA3(X1, s_11(I), Y)
log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
HALF_2_IN_GA1(s_11(s_11(X))) -> HALF_2_IN_GA1(X)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGA3(X1, s_11(I), Y)
log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGA3(X1, s_11(I), Y)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
LOG2_3_IN_GGA2(s_11(s_11(X)), I) -> IF_LOG2_3_IN_1_GGA2(I, half_2_in_ga1(s_11(s_11(X))))
IF_LOG2_3_IN_1_GGA2(I, half_2_out_ga1(X1)) -> LOG2_3_IN_GGA2(X1, s_11(I))
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)
half_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)
The remaining Dependency Pairs were at least non-strictly be oriented.
LOG2_3_IN_GGA2(s_11(s_11(X)), I) -> IF_LOG2_3_IN_1_GGA2(I, half_2_in_ga1(s_11(s_11(X))))
With the implicit AFS we had to orient the following set of usable rules non-strictly.
IF_LOG2_3_IN_1_GGA2(I, half_2_out_ga1(X1)) -> LOG2_3_IN_GGA2(X1, s_11(I))
Used ordering: POLO with Polynomial interpretation:
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)
POL(if_half_2_in_1_ga1(x1)) = 2 + x1
POL(0_0) = 0
POL(half_2_in_ga1(x1)) = x1
POL(LOG2_3_IN_GGA2(x1, x2)) = 2·x1
POL(half_2_out_ga1(x1)) = 2·x1
POL(IF_LOG2_3_IN_1_GGA2(x1, x2)) = x2
POL(s_11(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
IF_LOG2_3_IN_1_GGA2(I, half_2_out_ga1(X1)) -> LOG2_3_IN_GGA2(X1, s_11(I))
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)
half_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)