Left Termination of the query pattern log2(b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

log22(X, Y) :- log23(X, 00, Y).
log23(00, I, I).
log23(s1(00), I, I).
log23(s12 (X), I, Y) :- half2(s12 (X), X1), log23(X1, s1(I), Y).
half2(00, 00).
half2(s1(00), 00).
half2(s12 (X), s1(Y)) :- half2(X, Y).


With regard to the inferred argument filtering the predicates were used in the following modes:
log22: (b,f)
log23: (b,b,f)
half2: (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ga2(x1, x2)  =  log2_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ga3(x1, x2, x3)  =  if_log2_2_in_1_ga1(x3)
log2_3_in_gga3(x1, x2, x3)  =  log2_3_in_gga2(x1, x2)
log2_3_out_gga3(x1, x2, x3)  =  log2_3_out_gga1(x3)
if_log2_3_in_1_gga4(x1, x2, x3, x4)  =  if_log2_3_in_1_gga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_gga1(x5)
log2_2_out_ga2(x1, x2)  =  log2_2_out_ga1(x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ga2(x1, x2)  =  log2_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ga3(x1, x2, x3)  =  if_log2_2_in_1_ga1(x3)
log2_3_in_gga3(x1, x2, x3)  =  log2_3_in_gga2(x1, x2)
log2_3_out_gga3(x1, x2, x3)  =  log2_3_out_gga1(x3)
if_log2_3_in_1_gga4(x1, x2, x3, x4)  =  if_log2_3_in_1_gga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_gga1(x5)
log2_2_out_ga2(x1, x2)  =  log2_2_out_ga1(x2)


Pi DP problem:
The TRS P consists of the following rules:

LOG2_2_IN_GA2(X, Y) -> IF_LOG2_2_IN_1_GA3(X, Y, log2_3_in_gga3(X, 0_0, Y))
LOG2_2_IN_GA2(X, Y) -> LOG2_3_IN_GGA3(X, 0_0, Y)
LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> HALF_2_IN_GA2(s_11(s_11(X)), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_GGA5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGA3(X1, s_11(I), Y)

The TRS R consists of the following rules:

log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ga2(x1, x2)  =  log2_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ga3(x1, x2, x3)  =  if_log2_2_in_1_ga1(x3)
log2_3_in_gga3(x1, x2, x3)  =  log2_3_in_gga2(x1, x2)
log2_3_out_gga3(x1, x2, x3)  =  log2_3_out_gga1(x3)
if_log2_3_in_1_gga4(x1, x2, x3, x4)  =  if_log2_3_in_1_gga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_gga1(x5)
log2_2_out_ga2(x1, x2)  =  log2_2_out_ga1(x2)
IF_LOG2_2_IN_1_GA3(x1, x2, x3)  =  IF_LOG2_2_IN_1_GA1(x3)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)
LOG2_3_IN_GGA3(x1, x2, x3)  =  LOG2_3_IN_GGA2(x1, x2)
IF_LOG2_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_GGA2(x2, x4)
IF_HALF_2_IN_1_GA3(x1, x2, x3)  =  IF_HALF_2_IN_1_GA1(x3)
LOG2_2_IN_GA2(x1, x2)  =  LOG2_2_IN_GA1(x1)
IF_LOG2_3_IN_2_GGA5(x1, x2, x3, x4, x5)  =  IF_LOG2_3_IN_2_GGA1(x5)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

LOG2_2_IN_GA2(X, Y) -> IF_LOG2_2_IN_1_GA3(X, Y, log2_3_in_gga3(X, 0_0, Y))
LOG2_2_IN_GA2(X, Y) -> LOG2_3_IN_GGA3(X, 0_0, Y)
LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> HALF_2_IN_GA2(s_11(s_11(X)), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_GGA5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGA3(X1, s_11(I), Y)

The TRS R consists of the following rules:

log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ga2(x1, x2)  =  log2_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ga3(x1, x2, x3)  =  if_log2_2_in_1_ga1(x3)
log2_3_in_gga3(x1, x2, x3)  =  log2_3_in_gga2(x1, x2)
log2_3_out_gga3(x1, x2, x3)  =  log2_3_out_gga1(x3)
if_log2_3_in_1_gga4(x1, x2, x3, x4)  =  if_log2_3_in_1_gga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_gga1(x5)
log2_2_out_ga2(x1, x2)  =  log2_2_out_ga1(x2)
IF_LOG2_2_IN_1_GA3(x1, x2, x3)  =  IF_LOG2_2_IN_1_GA1(x3)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)
LOG2_3_IN_GGA3(x1, x2, x3)  =  LOG2_3_IN_GGA2(x1, x2)
IF_LOG2_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_GGA2(x2, x4)
IF_HALF_2_IN_1_GA3(x1, x2, x3)  =  IF_HALF_2_IN_1_GA1(x3)
LOG2_2_IN_GA2(x1, x2)  =  LOG2_2_IN_GA1(x1)
IF_LOG2_3_IN_2_GGA5(x1, x2, x3, x4, x5)  =  IF_LOG2_3_IN_2_GGA1(x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 5 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)

The TRS R consists of the following rules:

log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ga2(x1, x2)  =  log2_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ga3(x1, x2, x3)  =  if_log2_2_in_1_ga1(x3)
log2_3_in_gga3(x1, x2, x3)  =  log2_3_in_gga2(x1, x2)
log2_3_out_gga3(x1, x2, x3)  =  log2_3_out_gga1(x3)
if_log2_3_in_1_gga4(x1, x2, x3, x4)  =  if_log2_3_in_1_gga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_gga1(x5)
log2_2_out_ga2(x1, x2)  =  log2_2_out_ga1(x2)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA1(s_11(s_11(X))) -> HALF_2_IN_GA1(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {HALF_2_IN_GA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGA3(X1, s_11(I), Y)

The TRS R consists of the following rules:

log2_2_in_ga2(X, Y) -> if_log2_2_in_1_ga3(X, Y, log2_3_in_gga3(X, 0_0, Y))
log2_3_in_gga3(0_0, I, I) -> log2_3_out_gga3(0_0, I, I)
log2_3_in_gga3(s_11(0_0), I, I) -> log2_3_out_gga3(s_11(0_0), I, I)
log2_3_in_gga3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_gga4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_gga4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_in_gga3(X1, s_11(I), Y))
if_log2_3_in_2_gga5(X, I, Y, X1, log2_3_out_gga3(X1, s_11(I), Y)) -> log2_3_out_gga3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ga3(X, Y, log2_3_out_gga3(X, 0_0, Y)) -> log2_2_out_ga2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ga2(x1, x2)  =  log2_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ga3(x1, x2, x3)  =  if_log2_2_in_1_ga1(x3)
log2_3_in_gga3(x1, x2, x3)  =  log2_3_in_gga2(x1, x2)
log2_3_out_gga3(x1, x2, x3)  =  log2_3_out_gga1(x3)
if_log2_3_in_1_gga4(x1, x2, x3, x4)  =  if_log2_3_in_1_gga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_gga1(x5)
log2_2_out_ga2(x1, x2)  =  log2_2_out_ga1(x2)
LOG2_3_IN_GGA3(x1, x2, x3)  =  LOG2_3_IN_GGA2(x1, x2)
IF_LOG2_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_GGA2(x2, x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

LOG2_3_IN_GGA3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
IF_LOG2_3_IN_1_GGA4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGA3(X1, s_11(I), Y)

The TRS R consists of the following rules:

half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)

The argument filtering Pi contains the following mapping:
0_0  =  0_0
s_11(x1)  =  s_11(x1)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
LOG2_3_IN_GGA3(x1, x2, x3)  =  LOG2_3_IN_GGA2(x1, x2)
IF_LOG2_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_GGA2(x2, x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPPoloProof

Q DP problem:
The TRS P consists of the following rules:

LOG2_3_IN_GGA2(s_11(s_11(X)), I) -> IF_LOG2_3_IN_1_GGA2(I, half_2_in_ga1(s_11(s_11(X))))
IF_LOG2_3_IN_1_GGA2(I, half_2_out_ga1(X1)) -> LOG2_3_IN_GGA2(X1, s_11(I))

The TRS R consists of the following rules:

half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)

The set Q consists of the following terms:

half_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_LOG2_3_IN_1_GGA2, LOG2_3_IN_GGA2}.
By using a polynomial ordering, the following set of Dependency Pairs of this DP problem can be strictly oriented.

LOG2_3_IN_GGA2(s_11(s_11(X)), I) -> IF_LOG2_3_IN_1_GGA2(I, half_2_in_ga1(s_11(s_11(X))))
The remaining Dependency Pairs were at least non-strictly be oriented.

IF_LOG2_3_IN_1_GGA2(I, half_2_out_ga1(X1)) -> LOG2_3_IN_GGA2(X1, s_11(I))
With the implicit AFS we had to orient the following set of usable rules non-strictly.

half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)
Used ordering: POLO with Polynomial interpretation:

POL(if_half_2_in_1_ga1(x1)) = 2 + x1   
POL(0_0) = 0   
POL(half_2_in_ga1(x1)) = x1   
POL(LOG2_3_IN_GGA2(x1, x2)) = 2·x1   
POL(half_2_out_ga1(x1)) = 2·x1   
POL(IF_LOG2_3_IN_1_GGA2(x1, x2)) = x2   
POL(s_11(x1)) = 1 + x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPPoloProof
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF_LOG2_3_IN_1_GGA2(I, half_2_out_ga1(X1)) -> LOG2_3_IN_GGA2(X1, s_11(I))

The TRS R consists of the following rules:

half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)

The set Q consists of the following terms:

half_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LOG2_3_IN_GGA2, IF_LOG2_3_IN_1_GGA2}.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.