Left Termination of the query pattern log2(f,b) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

log22(X, Y) :- log23(X, 00, Y).
log23(00, I, I).
log23(s1(00), I, I).
log23(s12 (X), I, Y) :- half2(s12 (X), X1), log23(X1, s1(I), Y).
half2(00, 00).
half2(s1(00), 00).
half2(s12 (X), s1(Y)) :- half2(X, Y).


With regard to the inferred argument filtering the predicates were used in the following modes:
log22: (f,b)
log23: (f,b,b) (b,b,b)
half2: (f,f) (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg1(x1)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg2(x1, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg3(x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg1(x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg1(x1)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg2(x1, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg3(x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg1(x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)


Pi DP problem:
The TRS P consists of the following rules:

LOG2_2_IN_AG2(X, Y) -> IF_LOG2_2_IN_1_AG3(X, Y, log2_3_in_agg3(X, 0_0, Y))
LOG2_2_IN_AG2(X, Y) -> LOG2_3_IN_AGG3(X, 0_0, Y)
LOG2_3_IN_AGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
LOG2_3_IN_AGG3(s_11(s_11(X)), I, Y) -> HALF_2_IN_AA2(s_11(s_11(X)), X1)
HALF_2_IN_AA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_AA3(X, Y, half_2_in_aa2(X, Y))
HALF_2_IN_AA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_AA2(X, Y)
IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_AGG5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> HALF_2_IN_GA2(s_11(s_11(X)), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_GGG5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg1(x1)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg2(x1, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg3(x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg1(x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)
IF_LOG2_3_IN_1_GGG4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_GGG3(x2, x3, x4)
IF_LOG2_2_IN_1_AG3(x1, x2, x3)  =  IF_LOG2_2_IN_1_AG1(x3)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)
IF_LOG2_3_IN_1_AGG4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_AGG3(x2, x3, x4)
LOG2_3_IN_GGG3(x1, x2, x3)  =  LOG2_3_IN_GGG3(x1, x2, x3)
LOG2_2_IN_AG2(x1, x2)  =  LOG2_2_IN_AG1(x2)
IF_LOG2_3_IN_2_AGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_3_IN_2_AGG2(x1, x5)
IF_LOG2_3_IN_2_GGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_3_IN_2_GGG1(x5)
IF_HALF_2_IN_1_AA3(x1, x2, x3)  =  IF_HALF_2_IN_1_AA1(x3)
IF_HALF_2_IN_1_GA3(x1, x2, x3)  =  IF_HALF_2_IN_1_GA1(x3)
LOG2_3_IN_AGG3(x1, x2, x3)  =  LOG2_3_IN_AGG2(x2, x3)
HALF_2_IN_AA2(x1, x2)  =  HALF_2_IN_AA

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

LOG2_2_IN_AG2(X, Y) -> IF_LOG2_2_IN_1_AG3(X, Y, log2_3_in_agg3(X, 0_0, Y))
LOG2_2_IN_AG2(X, Y) -> LOG2_3_IN_AGG3(X, 0_0, Y)
LOG2_3_IN_AGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
LOG2_3_IN_AGG3(s_11(s_11(X)), I, Y) -> HALF_2_IN_AA2(s_11(s_11(X)), X1)
HALF_2_IN_AA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_AA3(X, Y, half_2_in_aa2(X, Y))
HALF_2_IN_AA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_AA2(X, Y)
IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_AGG5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> HALF_2_IN_GA2(s_11(s_11(X)), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_GGG5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg1(x1)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg2(x1, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg3(x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg1(x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)
IF_LOG2_3_IN_1_GGG4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_GGG3(x2, x3, x4)
IF_LOG2_2_IN_1_AG3(x1, x2, x3)  =  IF_LOG2_2_IN_1_AG1(x3)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)
IF_LOG2_3_IN_1_AGG4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_AGG3(x2, x3, x4)
LOG2_3_IN_GGG3(x1, x2, x3)  =  LOG2_3_IN_GGG3(x1, x2, x3)
LOG2_2_IN_AG2(x1, x2)  =  LOG2_2_IN_AG1(x2)
IF_LOG2_3_IN_2_AGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_3_IN_2_AGG2(x1, x5)
IF_LOG2_3_IN_2_GGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_3_IN_2_GGG1(x5)
IF_HALF_2_IN_1_AA3(x1, x2, x3)  =  IF_HALF_2_IN_1_AA1(x3)
IF_HALF_2_IN_1_GA3(x1, x2, x3)  =  IF_HALF_2_IN_1_GA1(x3)
LOG2_3_IN_AGG3(x1, x2, x3)  =  LOG2_3_IN_AGG2(x2, x3)
HALF_2_IN_AA2(x1, x2)  =  HALF_2_IN_AA

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 3 SCCs with 10 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg1(x1)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg2(x1, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg3(x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg1(x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA1(s_11(s_11(X))) -> HALF_2_IN_GA1(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {HALF_2_IN_GA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg1(x1)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg2(x1, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg3(x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg1(x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)
IF_LOG2_3_IN_1_GGG4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_GGG3(x2, x3, x4)
LOG2_3_IN_GGG3(x1, x2, x3)  =  LOG2_3_IN_GGG3(x1, x2, x3)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))

The TRS R consists of the following rules:

half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)

The argument filtering Pi contains the following mapping:
0_0  =  0_0
s_11(x1)  =  s_11(x1)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
IF_LOG2_3_IN_1_GGG4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_GGG3(x2, x3, x4)
LOG2_3_IN_GGG3(x1, x2, x3)  =  LOG2_3_IN_GGG3(x1, x2, x3)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPPoloProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

IF_LOG2_3_IN_1_GGG3(I, Y, half_2_out_ga1(X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGG3(I, Y, half_2_in_ga1(s_11(s_11(X))))

The TRS R consists of the following rules:

half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)

The set Q consists of the following terms:

half_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LOG2_3_IN_GGG3, IF_LOG2_3_IN_1_GGG3}.
By using a polynomial ordering, the following set of Dependency Pairs of this DP problem can be strictly oriented.

LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGG3(I, Y, half_2_in_ga1(s_11(s_11(X))))
The remaining Dependency Pairs were at least non-strictly be oriented.

IF_LOG2_3_IN_1_GGG3(I, Y, half_2_out_ga1(X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)
With the implicit AFS we had to orient the following set of usable rules non-strictly.

half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)
Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 0   
POL(if_half_2_in_1_ga1(x1)) = 2 + x1   
POL(LOG2_3_IN_GGG3(x1, x2, x3)) = 2·x1 + x3   
POL(half_2_in_ga1(x1)) = x1   
POL(IF_LOG2_3_IN_1_GGG3(x1, x2, x3)) = x2 + x3   
POL(half_2_out_ga1(x1)) = 2·x1   
POL(s_11(x1)) = 1 + x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPPoloProof
QDP
                            ↳ DependencyGraphProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

IF_LOG2_3_IN_1_GGG3(I, Y, half_2_out_ga1(X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)

The TRS R consists of the following rules:

half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)

The set Q consists of the following terms:

half_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LOG2_3_IN_GGG3, IF_LOG2_3_IN_1_GGG3}.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_AA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_AA2(X, Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag1(x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg1(x1)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg2(x1, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg3(x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg1(x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag1(x1)
HALF_2_IN_AA2(x1, x2)  =  HALF_2_IN_AA

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_AA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_AA2(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
HALF_2_IN_AA2(x1, x2)  =  HALF_2_IN_AA

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

HALF_2_IN_AA -> HALF_2_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {HALF_2_IN_AA}.
With regard to the inferred argument filtering the predicates were used in the following modes:
log22: (f,b)
log23: (f,b,b) (b,b,b)
half2: (f,f) (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg3(x1, x2, x3)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg4(x1, x2, x3, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg3(x1, x2, x3)
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg4(x1, x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga2(x1, x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga2(x1, x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg4(x1, x2, x3, x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg3(x1, x2, x3)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg4(x1, x2, x3, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg3(x1, x2, x3)
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg4(x1, x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga2(x1, x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga2(x1, x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg4(x1, x2, x3, x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)


Pi DP problem:
The TRS P consists of the following rules:

LOG2_2_IN_AG2(X, Y) -> IF_LOG2_2_IN_1_AG3(X, Y, log2_3_in_agg3(X, 0_0, Y))
LOG2_2_IN_AG2(X, Y) -> LOG2_3_IN_AGG3(X, 0_0, Y)
LOG2_3_IN_AGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
LOG2_3_IN_AGG3(s_11(s_11(X)), I, Y) -> HALF_2_IN_AA2(s_11(s_11(X)), X1)
HALF_2_IN_AA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_AA3(X, Y, half_2_in_aa2(X, Y))
HALF_2_IN_AA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_AA2(X, Y)
IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_AGG5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> HALF_2_IN_GA2(s_11(s_11(X)), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_GGG5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg3(x1, x2, x3)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg4(x1, x2, x3, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg3(x1, x2, x3)
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg4(x1, x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga2(x1, x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga2(x1, x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg4(x1, x2, x3, x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)
IF_LOG2_3_IN_1_GGG4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_GGG4(x1, x2, x3, x4)
IF_LOG2_2_IN_1_AG3(x1, x2, x3)  =  IF_LOG2_2_IN_1_AG2(x2, x3)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)
IF_LOG2_3_IN_1_AGG4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_AGG3(x2, x3, x4)
LOG2_3_IN_GGG3(x1, x2, x3)  =  LOG2_3_IN_GGG3(x1, x2, x3)
LOG2_2_IN_AG2(x1, x2)  =  LOG2_2_IN_AG1(x2)
IF_LOG2_3_IN_2_AGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_3_IN_2_AGG4(x1, x2, x3, x5)
IF_LOG2_3_IN_2_GGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_3_IN_2_GGG4(x1, x2, x3, x5)
IF_HALF_2_IN_1_AA3(x1, x2, x3)  =  IF_HALF_2_IN_1_AA1(x3)
IF_HALF_2_IN_1_GA3(x1, x2, x3)  =  IF_HALF_2_IN_1_GA2(x1, x3)
LOG2_3_IN_AGG3(x1, x2, x3)  =  LOG2_3_IN_AGG2(x2, x3)
HALF_2_IN_AA2(x1, x2)  =  HALF_2_IN_AA

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

LOG2_2_IN_AG2(X, Y) -> IF_LOG2_2_IN_1_AG3(X, Y, log2_3_in_agg3(X, 0_0, Y))
LOG2_2_IN_AG2(X, Y) -> LOG2_3_IN_AGG3(X, 0_0, Y)
LOG2_3_IN_AGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
LOG2_3_IN_AGG3(s_11(s_11(X)), I, Y) -> HALF_2_IN_AA2(s_11(s_11(X)), X1)
HALF_2_IN_AA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_AA3(X, Y, half_2_in_aa2(X, Y))
HALF_2_IN_AA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_AA2(X, Y)
IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_AGG5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_AGG4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> HALF_2_IN_GA2(s_11(s_11(X)), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> IF_LOG2_3_IN_2_GGG5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg3(x1, x2, x3)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg4(x1, x2, x3, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg3(x1, x2, x3)
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg4(x1, x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga2(x1, x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga2(x1, x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg4(x1, x2, x3, x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)
IF_LOG2_3_IN_1_GGG4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_GGG4(x1, x2, x3, x4)
IF_LOG2_2_IN_1_AG3(x1, x2, x3)  =  IF_LOG2_2_IN_1_AG2(x2, x3)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)
IF_LOG2_3_IN_1_AGG4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_AGG3(x2, x3, x4)
LOG2_3_IN_GGG3(x1, x2, x3)  =  LOG2_3_IN_GGG3(x1, x2, x3)
LOG2_2_IN_AG2(x1, x2)  =  LOG2_2_IN_AG1(x2)
IF_LOG2_3_IN_2_AGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_3_IN_2_AGG4(x1, x2, x3, x5)
IF_LOG2_3_IN_2_GGG5(x1, x2, x3, x4, x5)  =  IF_LOG2_3_IN_2_GGG4(x1, x2, x3, x5)
IF_HALF_2_IN_1_AA3(x1, x2, x3)  =  IF_HALF_2_IN_1_AA1(x3)
IF_HALF_2_IN_1_GA3(x1, x2, x3)  =  IF_HALF_2_IN_1_GA2(x1, x3)
LOG2_3_IN_AGG3(x1, x2, x3)  =  LOG2_3_IN_AGG2(x2, x3)
HALF_2_IN_AA2(x1, x2)  =  HALF_2_IN_AA

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 3 SCCs with 10 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg3(x1, x2, x3)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg4(x1, x2, x3, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg3(x1, x2, x3)
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg4(x1, x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga2(x1, x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga2(x1, x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg4(x1, x2, x3, x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> LOG2_3_IN_GGG3(X1, s_11(I), Y)
LOG2_3_IN_GGG3(s_11(s_11(X)), I, Y) -> IF_LOG2_3_IN_1_GGG4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg3(x1, x2, x3)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg4(x1, x2, x3, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg3(x1, x2, x3)
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg4(x1, x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga2(x1, x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga2(x1, x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg4(x1, x2, x3, x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)
IF_LOG2_3_IN_1_GGG4(x1, x2, x3, x4)  =  IF_LOG2_3_IN_1_GGG4(x1, x2, x3, x4)
LOG2_3_IN_GGG3(x1, x2, x3)  =  LOG2_3_IN_GGG3(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_AA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_AA2(X, Y)

The TRS R consists of the following rules:

log2_2_in_ag2(X, Y) -> if_log2_2_in_1_ag3(X, Y, log2_3_in_agg3(X, 0_0, Y))
log2_3_in_agg3(0_0, I, I) -> log2_3_out_agg3(0_0, I, I)
log2_3_in_agg3(s_11(0_0), I, I) -> log2_3_out_agg3(s_11(0_0), I, I)
log2_3_in_agg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_agg4(X, I, Y, half_2_in_aa2(s_11(s_11(X)), X1))
half_2_in_aa2(0_0, 0_0) -> half_2_out_aa2(0_0, 0_0)
half_2_in_aa2(s_11(0_0), 0_0) -> half_2_out_aa2(s_11(0_0), 0_0)
half_2_in_aa2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_aa3(X, Y, half_2_in_aa2(X, Y))
if_half_2_in_1_aa3(X, Y, half_2_out_aa2(X, Y)) -> half_2_out_aa2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_agg4(X, I, Y, half_2_out_aa2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
log2_3_in_ggg3(0_0, I, I) -> log2_3_out_ggg3(0_0, I, I)
log2_3_in_ggg3(s_11(0_0), I, I) -> log2_3_out_ggg3(s_11(0_0), I, I)
log2_3_in_ggg3(s_11(s_11(X)), I, Y) -> if_log2_3_in_1_ggg4(X, I, Y, half_2_in_ga2(s_11(s_11(X)), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log2_3_in_1_ggg4(X, I, Y, half_2_out_ga2(s_11(s_11(X)), X1)) -> if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_in_ggg3(X1, s_11(I), Y))
if_log2_3_in_2_ggg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_ggg3(s_11(s_11(X)), I, Y)
if_log2_3_in_2_agg5(X, I, Y, X1, log2_3_out_ggg3(X1, s_11(I), Y)) -> log2_3_out_agg3(s_11(s_11(X)), I, Y)
if_log2_2_in_1_ag3(X, Y, log2_3_out_agg3(X, 0_0, Y)) -> log2_2_out_ag2(X, Y)

The argument filtering Pi contains the following mapping:
log2_2_in_ag2(x1, x2)  =  log2_2_in_ag1(x2)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
if_log2_2_in_1_ag3(x1, x2, x3)  =  if_log2_2_in_1_ag2(x2, x3)
log2_3_in_agg3(x1, x2, x3)  =  log2_3_in_agg2(x2, x3)
log2_3_out_agg3(x1, x2, x3)  =  log2_3_out_agg3(x1, x2, x3)
if_log2_3_in_1_agg4(x1, x2, x3, x4)  =  if_log2_3_in_1_agg3(x2, x3, x4)
half_2_in_aa2(x1, x2)  =  half_2_in_aa
half_2_out_aa2(x1, x2)  =  half_2_out_aa2(x1, x2)
if_half_2_in_1_aa3(x1, x2, x3)  =  if_half_2_in_1_aa1(x3)
if_log2_3_in_2_agg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_agg4(x1, x2, x3, x5)
log2_3_in_ggg3(x1, x2, x3)  =  log2_3_in_ggg3(x1, x2, x3)
log2_3_out_ggg3(x1, x2, x3)  =  log2_3_out_ggg3(x1, x2, x3)
if_log2_3_in_1_ggg4(x1, x2, x3, x4)  =  if_log2_3_in_1_ggg4(x1, x2, x3, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga2(x1, x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga2(x1, x3)
if_log2_3_in_2_ggg5(x1, x2, x3, x4, x5)  =  if_log2_3_in_2_ggg4(x1, x2, x3, x5)
log2_2_out_ag2(x1, x2)  =  log2_2_out_ag2(x1, x2)
HALF_2_IN_AA2(x1, x2)  =  HALF_2_IN_AA

We have to consider all (P,R,Pi)-chains