Left Termination of the query pattern transpose_aux(f,b,f) w.r.t. the given Prolog program could not be shown:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

transposeaux3(.2(R, Rs), underscore, .2(C, Cs)) :- row2col5(R, .2(C, Cs), Cols1, {}0, Accm).
row2col5(.2(X, Xs), .2(.2(X, Ys), Cols), .2(Ys, Cols1), A, B) :- row2col5(Xs, Cols, Cols1, .2({}0, A), B).


With regard to the inferred argument filtering the predicates were used in the following modes:
transpose_aux3: (f,b,f)
row2col5: (f,b,f,b,f) (f,f,f,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


transpose_aux_3_in_aga3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
row2col_5_in_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
row2col_5_in_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_out_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm)) -> transpose_aux_3_out_aga3(._22(R, Rs), underscore, ._22(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_3_in_aga3(x1, x2, x3)  =  transpose_aux_3_in_aga1(x2)
._22(x1, x2)  =  ._2
[]_0  =  []_0
if_transpose_aux_3_in_1_aga6(x1, x2, x3, x4, x5, x6)  =  if_transpose_aux_3_in_1_aga1(x6)
row2col_5_in_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_aaaga1(x4)
if_row2col_5_in_1_aaaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_aaaga1(x8)
row2col_5_out_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_aaaga4(x1, x2, x3, x5)
row2col_5_in_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_agaga2(x2, x4)
if_row2col_5_in_1_agaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_agaga1(x8)
row2col_5_out_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_agaga3(x1, x3, x5)
transpose_aux_3_out_aga3(x1, x2, x3)  =  transpose_aux_3_out_aga2(x1, x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

transpose_aux_3_in_aga3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
row2col_5_in_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
row2col_5_in_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_out_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm)) -> transpose_aux_3_out_aga3(._22(R, Rs), underscore, ._22(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_3_in_aga3(x1, x2, x3)  =  transpose_aux_3_in_aga1(x2)
._22(x1, x2)  =  ._2
[]_0  =  []_0
if_transpose_aux_3_in_1_aga6(x1, x2, x3, x4, x5, x6)  =  if_transpose_aux_3_in_1_aga1(x6)
row2col_5_in_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_aaaga1(x4)
if_row2col_5_in_1_aaaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_aaaga1(x8)
row2col_5_out_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_aaaga4(x1, x2, x3, x5)
row2col_5_in_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_agaga2(x2, x4)
if_row2col_5_in_1_agaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_agaga1(x8)
row2col_5_out_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_agaga3(x1, x3, x5)
transpose_aux_3_out_aga3(x1, x2, x3)  =  transpose_aux_3_out_aga2(x1, x3)


Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_AUX_3_IN_AGA3(._22(R, Rs), underscore, ._22(C, Cs)) -> IF_TRANSPOSE_AUX_3_IN_1_AGA6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
TRANSPOSE_AUX_3_IN_AGA3(._22(R, Rs), underscore, ._22(C, Cs)) -> ROW2COL_5_IN_AGAGA5(R, ._22(C, Cs), Cols1, []_0, Accm)
ROW2COL_5_IN_AGAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> IF_ROW2COL_5_IN_1_AGAGA8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
ROW2COL_5_IN_AGAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)
ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> IF_ROW2COL_5_IN_1_AAAGA8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)

The TRS R consists of the following rules:

transpose_aux_3_in_aga3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
row2col_5_in_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
row2col_5_in_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_out_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm)) -> transpose_aux_3_out_aga3(._22(R, Rs), underscore, ._22(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_3_in_aga3(x1, x2, x3)  =  transpose_aux_3_in_aga1(x2)
._22(x1, x2)  =  ._2
[]_0  =  []_0
if_transpose_aux_3_in_1_aga6(x1, x2, x3, x4, x5, x6)  =  if_transpose_aux_3_in_1_aga1(x6)
row2col_5_in_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_aaaga1(x4)
if_row2col_5_in_1_aaaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_aaaga1(x8)
row2col_5_out_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_aaaga4(x1, x2, x3, x5)
row2col_5_in_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_agaga2(x2, x4)
if_row2col_5_in_1_agaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_agaga1(x8)
row2col_5_out_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_agaga3(x1, x3, x5)
transpose_aux_3_out_aga3(x1, x2, x3)  =  transpose_aux_3_out_aga2(x1, x3)
ROW2COL_5_IN_AGAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AGAGA2(x2, x4)
ROW2COL_5_IN_AAAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AAAGA1(x4)
TRANSPOSE_AUX_3_IN_AGA3(x1, x2, x3)  =  TRANSPOSE_AUX_3_IN_AGA1(x2)
IF_ROW2COL_5_IN_1_AGAGA8(x1, x2, x3, x4, x5, x6, x7, x8)  =  IF_ROW2COL_5_IN_1_AGAGA1(x8)
IF_ROW2COL_5_IN_1_AAAGA8(x1, x2, x3, x4, x5, x6, x7, x8)  =  IF_ROW2COL_5_IN_1_AAAGA1(x8)
IF_TRANSPOSE_AUX_3_IN_1_AGA6(x1, x2, x3, x4, x5, x6)  =  IF_TRANSPOSE_AUX_3_IN_1_AGA1(x6)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_AUX_3_IN_AGA3(._22(R, Rs), underscore, ._22(C, Cs)) -> IF_TRANSPOSE_AUX_3_IN_1_AGA6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
TRANSPOSE_AUX_3_IN_AGA3(._22(R, Rs), underscore, ._22(C, Cs)) -> ROW2COL_5_IN_AGAGA5(R, ._22(C, Cs), Cols1, []_0, Accm)
ROW2COL_5_IN_AGAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> IF_ROW2COL_5_IN_1_AGAGA8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
ROW2COL_5_IN_AGAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)
ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> IF_ROW2COL_5_IN_1_AAAGA8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)

The TRS R consists of the following rules:

transpose_aux_3_in_aga3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
row2col_5_in_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
row2col_5_in_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_out_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm)) -> transpose_aux_3_out_aga3(._22(R, Rs), underscore, ._22(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_3_in_aga3(x1, x2, x3)  =  transpose_aux_3_in_aga1(x2)
._22(x1, x2)  =  ._2
[]_0  =  []_0
if_transpose_aux_3_in_1_aga6(x1, x2, x3, x4, x5, x6)  =  if_transpose_aux_3_in_1_aga1(x6)
row2col_5_in_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_aaaga1(x4)
if_row2col_5_in_1_aaaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_aaaga1(x8)
row2col_5_out_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_aaaga4(x1, x2, x3, x5)
row2col_5_in_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_agaga2(x2, x4)
if_row2col_5_in_1_agaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_agaga1(x8)
row2col_5_out_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_agaga3(x1, x3, x5)
transpose_aux_3_out_aga3(x1, x2, x3)  =  transpose_aux_3_out_aga2(x1, x3)
ROW2COL_5_IN_AGAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AGAGA2(x2, x4)
ROW2COL_5_IN_AAAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AAAGA1(x4)
TRANSPOSE_AUX_3_IN_AGA3(x1, x2, x3)  =  TRANSPOSE_AUX_3_IN_AGA1(x2)
IF_ROW2COL_5_IN_1_AGAGA8(x1, x2, x3, x4, x5, x6, x7, x8)  =  IF_ROW2COL_5_IN_1_AGAGA1(x8)
IF_ROW2COL_5_IN_1_AAAGA8(x1, x2, x3, x4, x5, x6, x7, x8)  =  IF_ROW2COL_5_IN_1_AAAGA1(x8)
IF_TRANSPOSE_AUX_3_IN_1_AGA6(x1, x2, x3, x4, x5, x6)  =  IF_TRANSPOSE_AUX_3_IN_1_AGA1(x6)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 5 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)

The TRS R consists of the following rules:

transpose_aux_3_in_aga3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
row2col_5_in_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
row2col_5_in_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_out_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm)) -> transpose_aux_3_out_aga3(._22(R, Rs), underscore, ._22(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_3_in_aga3(x1, x2, x3)  =  transpose_aux_3_in_aga1(x2)
._22(x1, x2)  =  ._2
[]_0  =  []_0
if_transpose_aux_3_in_1_aga6(x1, x2, x3, x4, x5, x6)  =  if_transpose_aux_3_in_1_aga1(x6)
row2col_5_in_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_aaaga1(x4)
if_row2col_5_in_1_aaaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_aaaga1(x8)
row2col_5_out_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_aaaga4(x1, x2, x3, x5)
row2col_5_in_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_agaga2(x2, x4)
if_row2col_5_in_1_agaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_agaga1(x8)
row2col_5_out_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_agaga3(x1, x3, x5)
transpose_aux_3_out_aga3(x1, x2, x3)  =  transpose_aux_3_out_aga2(x1, x3)
ROW2COL_5_IN_AAAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AAAGA1(x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._2
[]_0  =  []_0
ROW2COL_5_IN_AAAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AAAGA1(x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

ROW2COL_5_IN_AAAGA1(A) -> ROW2COL_5_IN_AAAGA1(._2)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {ROW2COL_5_IN_AAAGA1}.
With regard to the inferred argument filtering the predicates were used in the following modes:
transpose_aux3: (f,b,f)
row2col5: (f,b,f,b,f) (f,f,f,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

transpose_aux_3_in_aga3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
row2col_5_in_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
row2col_5_in_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_out_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm)) -> transpose_aux_3_out_aga3(._22(R, Rs), underscore, ._22(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_3_in_aga3(x1, x2, x3)  =  transpose_aux_3_in_aga1(x2)
._22(x1, x2)  =  ._2
[]_0  =  []_0
if_transpose_aux_3_in_1_aga6(x1, x2, x3, x4, x5, x6)  =  if_transpose_aux_3_in_1_aga2(x3, x6)
row2col_5_in_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_aaaga1(x4)
if_row2col_5_in_1_aaaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_aaaga2(x6, x8)
row2col_5_out_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_aaaga5(x1, x2, x3, x4, x5)
row2col_5_in_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_agaga2(x2, x4)
if_row2col_5_in_1_agaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_agaga2(x6, x8)
row2col_5_out_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_agaga5(x1, x2, x3, x4, x5)
transpose_aux_3_out_aga3(x1, x2, x3)  =  transpose_aux_3_out_aga3(x1, x2, x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

transpose_aux_3_in_aga3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
row2col_5_in_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
row2col_5_in_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_out_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm)) -> transpose_aux_3_out_aga3(._22(R, Rs), underscore, ._22(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_3_in_aga3(x1, x2, x3)  =  transpose_aux_3_in_aga1(x2)
._22(x1, x2)  =  ._2
[]_0  =  []_0
if_transpose_aux_3_in_1_aga6(x1, x2, x3, x4, x5, x6)  =  if_transpose_aux_3_in_1_aga2(x3, x6)
row2col_5_in_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_aaaga1(x4)
if_row2col_5_in_1_aaaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_aaaga2(x6, x8)
row2col_5_out_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_aaaga5(x1, x2, x3, x4, x5)
row2col_5_in_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_agaga2(x2, x4)
if_row2col_5_in_1_agaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_agaga2(x6, x8)
row2col_5_out_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_agaga5(x1, x2, x3, x4, x5)
transpose_aux_3_out_aga3(x1, x2, x3)  =  transpose_aux_3_out_aga3(x1, x2, x3)


Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_AUX_3_IN_AGA3(._22(R, Rs), underscore, ._22(C, Cs)) -> IF_TRANSPOSE_AUX_3_IN_1_AGA6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
TRANSPOSE_AUX_3_IN_AGA3(._22(R, Rs), underscore, ._22(C, Cs)) -> ROW2COL_5_IN_AGAGA5(R, ._22(C, Cs), Cols1, []_0, Accm)
ROW2COL_5_IN_AGAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> IF_ROW2COL_5_IN_1_AGAGA8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
ROW2COL_5_IN_AGAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)
ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> IF_ROW2COL_5_IN_1_AAAGA8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)

The TRS R consists of the following rules:

transpose_aux_3_in_aga3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
row2col_5_in_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
row2col_5_in_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_out_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm)) -> transpose_aux_3_out_aga3(._22(R, Rs), underscore, ._22(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_3_in_aga3(x1, x2, x3)  =  transpose_aux_3_in_aga1(x2)
._22(x1, x2)  =  ._2
[]_0  =  []_0
if_transpose_aux_3_in_1_aga6(x1, x2, x3, x4, x5, x6)  =  if_transpose_aux_3_in_1_aga2(x3, x6)
row2col_5_in_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_aaaga1(x4)
if_row2col_5_in_1_aaaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_aaaga2(x6, x8)
row2col_5_out_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_aaaga5(x1, x2, x3, x4, x5)
row2col_5_in_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_agaga2(x2, x4)
if_row2col_5_in_1_agaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_agaga2(x6, x8)
row2col_5_out_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_agaga5(x1, x2, x3, x4, x5)
transpose_aux_3_out_aga3(x1, x2, x3)  =  transpose_aux_3_out_aga3(x1, x2, x3)
ROW2COL_5_IN_AGAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AGAGA2(x2, x4)
ROW2COL_5_IN_AAAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AAAGA1(x4)
TRANSPOSE_AUX_3_IN_AGA3(x1, x2, x3)  =  TRANSPOSE_AUX_3_IN_AGA1(x2)
IF_ROW2COL_5_IN_1_AGAGA8(x1, x2, x3, x4, x5, x6, x7, x8)  =  IF_ROW2COL_5_IN_1_AGAGA2(x6, x8)
IF_ROW2COL_5_IN_1_AAAGA8(x1, x2, x3, x4, x5, x6, x7, x8)  =  IF_ROW2COL_5_IN_1_AAAGA2(x6, x8)
IF_TRANSPOSE_AUX_3_IN_1_AGA6(x1, x2, x3, x4, x5, x6)  =  IF_TRANSPOSE_AUX_3_IN_1_AGA2(x3, x6)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_AUX_3_IN_AGA3(._22(R, Rs), underscore, ._22(C, Cs)) -> IF_TRANSPOSE_AUX_3_IN_1_AGA6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
TRANSPOSE_AUX_3_IN_AGA3(._22(R, Rs), underscore, ._22(C, Cs)) -> ROW2COL_5_IN_AGAGA5(R, ._22(C, Cs), Cols1, []_0, Accm)
ROW2COL_5_IN_AGAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> IF_ROW2COL_5_IN_1_AGAGA8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
ROW2COL_5_IN_AGAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)
ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> IF_ROW2COL_5_IN_1_AAAGA8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)

The TRS R consists of the following rules:

transpose_aux_3_in_aga3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
row2col_5_in_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
row2col_5_in_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_out_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm)) -> transpose_aux_3_out_aga3(._22(R, Rs), underscore, ._22(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_3_in_aga3(x1, x2, x3)  =  transpose_aux_3_in_aga1(x2)
._22(x1, x2)  =  ._2
[]_0  =  []_0
if_transpose_aux_3_in_1_aga6(x1, x2, x3, x4, x5, x6)  =  if_transpose_aux_3_in_1_aga2(x3, x6)
row2col_5_in_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_aaaga1(x4)
if_row2col_5_in_1_aaaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_aaaga2(x6, x8)
row2col_5_out_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_aaaga5(x1, x2, x3, x4, x5)
row2col_5_in_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_agaga2(x2, x4)
if_row2col_5_in_1_agaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_agaga2(x6, x8)
row2col_5_out_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_agaga5(x1, x2, x3, x4, x5)
transpose_aux_3_out_aga3(x1, x2, x3)  =  transpose_aux_3_out_aga3(x1, x2, x3)
ROW2COL_5_IN_AGAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AGAGA2(x2, x4)
ROW2COL_5_IN_AAAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AAAGA1(x4)
TRANSPOSE_AUX_3_IN_AGA3(x1, x2, x3)  =  TRANSPOSE_AUX_3_IN_AGA1(x2)
IF_ROW2COL_5_IN_1_AGAGA8(x1, x2, x3, x4, x5, x6, x7, x8)  =  IF_ROW2COL_5_IN_1_AGAGA2(x6, x8)
IF_ROW2COL_5_IN_1_AAAGA8(x1, x2, x3, x4, x5, x6, x7, x8)  =  IF_ROW2COL_5_IN_1_AAAGA2(x6, x8)
IF_TRANSPOSE_AUX_3_IN_1_AGA6(x1, x2, x3, x4, x5, x6)  =  IF_TRANSPOSE_AUX_3_IN_1_AGA2(x3, x6)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 1 SCC with 5 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
PiDP
              ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)

The TRS R consists of the following rules:

transpose_aux_3_in_aga3(._22(R, Rs), underscore, ._22(C, Cs)) -> if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_in_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm))
row2col_5_in_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
row2col_5_in_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_in_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B))
if_row2col_5_in_1_aaaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_aaaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_row2col_5_in_1_agaga8(X, Xs, Ys, Cols, Cols1, A, B, row2col_5_out_aaaga5(Xs, Cols, Cols1, ._22([]_0, A), B)) -> row2col_5_out_agaga5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B)
if_transpose_aux_3_in_1_aga6(R, Rs, underscore, C, Cs, row2col_5_out_agaga5(R, ._22(C, Cs), Cols1, []_0, Accm)) -> transpose_aux_3_out_aga3(._22(R, Rs), underscore, ._22(C, Cs))

The argument filtering Pi contains the following mapping:
transpose_aux_3_in_aga3(x1, x2, x3)  =  transpose_aux_3_in_aga1(x2)
._22(x1, x2)  =  ._2
[]_0  =  []_0
if_transpose_aux_3_in_1_aga6(x1, x2, x3, x4, x5, x6)  =  if_transpose_aux_3_in_1_aga2(x3, x6)
row2col_5_in_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_aaaga1(x4)
if_row2col_5_in_1_aaaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_aaaga2(x6, x8)
row2col_5_out_aaaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_aaaga5(x1, x2, x3, x4, x5)
row2col_5_in_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_in_agaga2(x2, x4)
if_row2col_5_in_1_agaga8(x1, x2, x3, x4, x5, x6, x7, x8)  =  if_row2col_5_in_1_agaga2(x6, x8)
row2col_5_out_agaga5(x1, x2, x3, x4, x5)  =  row2col_5_out_agaga5(x1, x2, x3, x4, x5)
transpose_aux_3_out_aga3(x1, x2, x3)  =  transpose_aux_3_out_aga3(x1, x2, x3)
ROW2COL_5_IN_AAAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AAAGA1(x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
PiDP
                  ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_5_IN_AAAGA5(._22(X, Xs), ._22(._22(X, Ys), Cols), ._22(Ys, Cols1), A, B) -> ROW2COL_5_IN_AAAGA5(Xs, Cols, Cols1, ._22([]_0, A), B)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._2
[]_0  =  []_0
ROW2COL_5_IN_AAAGA5(x1, x2, x3, x4, x5)  =  ROW2COL_5_IN_AAAGA1(x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ PiDP
              ↳ UsableRulesProof
                ↳ PiDP
                  ↳ PiDPToQDPProof
QDP

Q DP problem:
The TRS P consists of the following rules:

ROW2COL_5_IN_AAAGA1(A) -> ROW2COL_5_IN_AAAGA1(._2)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {ROW2COL_5_IN_AAAGA1}.