↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
times3: (b,b,f)
even2: (b,f)
if4: (b,b,b,f)
half2: (b,f)
plus3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_in_ga2(s_11(X), B))
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> EVEN_2_IN_GA2(s_11(X), B)
EVEN_2_IN_GA2(s_11(s_11(X)), B) -> IF_EVEN_2_IN_1_GA3(X, B, even_2_in_ga2(X, B))
EVEN_2_IN_GA2(s_11(s_11(X)), B) -> EVEN_2_IN_GA2(X, B)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_TIMES_3_IN_2_GGA5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_4_IN_GGGA4(B, s_11(X), Y, Z)
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> HALF_2_IN_GA2(s_11(X), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> TIMES_3_IN_GGA3(X1, Y, Y1)
IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> IF_IF_4_IN_3_GGGA5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> PLUS_3_IN_GGA3(Y1, Y1, Z)
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_PLUS_3_IN_1_GGA4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)
IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_in_gga3(X, Y, U))
IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> IF_IF_4_IN_5_GGGA5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> PLUS_3_IN_GGA3(Y, U, Z)
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_in_ga2(s_11(X), B))
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> EVEN_2_IN_GA2(s_11(X), B)
EVEN_2_IN_GA2(s_11(s_11(X)), B) -> IF_EVEN_2_IN_1_GA3(X, B, even_2_in_ga2(X, B))
EVEN_2_IN_GA2(s_11(s_11(X)), B) -> EVEN_2_IN_GA2(X, B)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_TIMES_3_IN_2_GGA5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_4_IN_GGGA4(B, s_11(X), Y, Z)
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> HALF_2_IN_GA2(s_11(X), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> TIMES_3_IN_GGA3(X1, Y, Y1)
IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> IF_IF_4_IN_3_GGGA5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> PLUS_3_IN_GGA3(Y1, Y1, Z)
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_PLUS_3_IN_1_GGA4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)
IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_in_gga3(X, Y, U))
IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> IF_IF_4_IN_5_GGGA5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> PLUS_3_IN_GGA3(Y, U, Z)
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
PLUS_3_IN_GGA2(s_11(X), Y) -> PLUS_3_IN_GGA2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
HALF_2_IN_GA1(s_11(s_11(X))) -> HALF_2_IN_GA1(X)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
EVEN_2_IN_GA2(s_11(s_11(X)), B) -> EVEN_2_IN_GA2(X, B)
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
EVEN_2_IN_GA2(s_11(s_11(X)), B) -> EVEN_2_IN_GA2(X, B)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PrologToPiTRSProof
EVEN_2_IN_GA1(s_11(s_11(X))) -> EVEN_2_IN_GA1(X)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> TIMES_3_IN_GGA3(X1, Y, Y1)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_4_IN_GGGA4(B, s_11(X), Y, Z)
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_in_ga2(s_11(X), B))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> TIMES_3_IN_GGA3(X1, Y, Y1)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_4_IN_GGGA4(B, s_11(X), Y, Z)
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_in_ga2(s_11(X), B))
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ PrologToPiTRSProof
IF_4_IN_GGGA3(false_0, s_11(X), Y) -> TIMES_3_IN_GGA2(X, Y)
IF_4_IN_GGGA3(true_0, s_11(X), Y) -> IF_IF_4_IN_1_GGGA2(Y, half_2_in_ga1(s_11(X)))
IF_IF_4_IN_1_GGGA2(Y, half_2_out_ga1(X1)) -> TIMES_3_IN_GGA2(X1, Y)
IF_TIMES_3_IN_1_GGA3(X, Y, even_2_out_ga1(B)) -> IF_4_IN_GGGA3(B, s_11(X), Y)
TIMES_3_IN_GGA2(s_11(X), Y) -> IF_TIMES_3_IN_1_GGA3(X, Y, even_2_in_ga1(s_11(X)))
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
even_2_in_ga1(s_11(0_0)) -> even_2_out_ga1(false_0)
even_2_in_ga1(s_11(s_11(X))) -> if_even_2_in_1_ga1(even_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
if_even_2_in_1_ga1(even_2_out_ga1(B)) -> even_2_out_ga1(B)
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
even_2_in_ga1(0_0) -> even_2_out_ga1(true_0)
half_2_in_ga1(x0)
even_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)
if_even_2_in_1_ga1(x0)
The remaining Dependency Pairs were at least non-strictly be oriented.
IF_4_IN_GGGA3(false_0, s_11(X), Y) -> TIMES_3_IN_GGA2(X, Y)
With the implicit AFS we had to orient the following set of usable rules non-strictly.
IF_4_IN_GGGA3(true_0, s_11(X), Y) -> IF_IF_4_IN_1_GGGA2(Y, half_2_in_ga1(s_11(X)))
IF_IF_4_IN_1_GGGA2(Y, half_2_out_ga1(X1)) -> TIMES_3_IN_GGA2(X1, Y)
IF_TIMES_3_IN_1_GGA3(X, Y, even_2_out_ga1(B)) -> IF_4_IN_GGGA3(B, s_11(X), Y)
TIMES_3_IN_GGA2(s_11(X), Y) -> IF_TIMES_3_IN_1_GGA3(X, Y, even_2_in_ga1(s_11(X)))
Used ordering: POLO with Polynomial interpretation:
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
POL(0_0) = 0
POL(if_half_2_in_1_ga1(x1)) = 1 + x1
POL(TIMES_3_IN_GGA2(x1, x2)) = x1 + x2
POL(false_0) = 0
POL(half_2_in_ga1(x1)) = x1
POL(true_0) = 0
POL(IF_TIMES_3_IN_1_GGA3(x1, x2, x3)) = 1 + x1 + x2
POL(half_2_out_ga1(x1)) = x1
POL(IF_4_IN_GGGA3(x1, x2, x3)) = x2 + x3
POL(if_even_2_in_1_ga1(x1)) = 0
POL(even_2_in_ga1(x1)) = 0
POL(even_2_out_ga1(x1)) = 0
POL(IF_IF_4_IN_1_GGGA2(x1, x2)) = x1 + x2
POL(s_11(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ QDPPoloProof
↳ PrologToPiTRSProof
IF_4_IN_GGGA3(true_0, s_11(X), Y) -> IF_IF_4_IN_1_GGGA2(Y, half_2_in_ga1(s_11(X)))
IF_IF_4_IN_1_GGGA2(Y, half_2_out_ga1(X1)) -> TIMES_3_IN_GGA2(X1, Y)
IF_TIMES_3_IN_1_GGA3(X, Y, even_2_out_ga1(B)) -> IF_4_IN_GGGA3(B, s_11(X), Y)
TIMES_3_IN_GGA2(s_11(X), Y) -> IF_TIMES_3_IN_1_GGA3(X, Y, even_2_in_ga1(s_11(X)))
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
even_2_in_ga1(s_11(0_0)) -> even_2_out_ga1(false_0)
even_2_in_ga1(s_11(s_11(X))) -> if_even_2_in_1_ga1(even_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
if_even_2_in_1_ga1(even_2_out_ga1(B)) -> even_2_out_ga1(B)
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
even_2_in_ga1(0_0) -> even_2_out_ga1(true_0)
half_2_in_ga1(x0)
even_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)
if_even_2_in_1_ga1(x0)
The remaining Dependency Pairs were at least non-strictly be oriented.
TIMES_3_IN_GGA2(s_11(X), Y) -> IF_TIMES_3_IN_1_GGA3(X, Y, even_2_in_ga1(s_11(X)))
With the implicit AFS we had to orient the following set of usable rules non-strictly.
IF_4_IN_GGGA3(true_0, s_11(X), Y) -> IF_IF_4_IN_1_GGGA2(Y, half_2_in_ga1(s_11(X)))
IF_IF_4_IN_1_GGGA2(Y, half_2_out_ga1(X1)) -> TIMES_3_IN_GGA2(X1, Y)
IF_TIMES_3_IN_1_GGA3(X, Y, even_2_out_ga1(B)) -> IF_4_IN_GGGA3(B, s_11(X), Y)
Used ordering: POLO with Polynomial interpretation:
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
POL(0_0) = 0
POL(if_half_2_in_1_ga1(x1)) = 2 + x1
POL(TIMES_3_IN_GGA2(x1, x2)) = 2·x1 + x2
POL(false_0) = 0
POL(half_2_in_ga1(x1)) = x1
POL(true_0) = 0
POL(IF_TIMES_3_IN_1_GGA3(x1, x2, x3)) = 1 + x1 + x2
POL(half_2_out_ga1(x1)) = 2·x1
POL(IF_4_IN_GGGA3(x1, x2, x3)) = x2 + x3
POL(if_even_2_in_1_ga1(x1)) = 0
POL(even_2_in_ga1(x1)) = 0
POL(even_2_out_ga1(x1)) = 0
POL(IF_IF_4_IN_1_GGGA2(x1, x2)) = x1 + x2
POL(s_11(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
IF_4_IN_GGGA3(true_0, s_11(X), Y) -> IF_IF_4_IN_1_GGGA2(Y, half_2_in_ga1(s_11(X)))
IF_IF_4_IN_1_GGGA2(Y, half_2_out_ga1(X1)) -> TIMES_3_IN_GGA2(X1, Y)
IF_TIMES_3_IN_1_GGA3(X, Y, even_2_out_ga1(B)) -> IF_4_IN_GGGA3(B, s_11(X), Y)
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
even_2_in_ga1(s_11(0_0)) -> even_2_out_ga1(false_0)
even_2_in_ga1(s_11(s_11(X))) -> if_even_2_in_1_ga1(even_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
if_even_2_in_1_ga1(even_2_out_ga1(B)) -> even_2_out_ga1(B)
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
even_2_in_ga1(0_0) -> even_2_out_ga1(true_0)
half_2_in_ga1(x0)
even_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)
if_even_2_in_1_ga1(x0)
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)