Left Termination of the query pattern times(b,b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof

even2(00, true0).
even2(s1(00), false0).
even2(s12 (X), B) :- even2(X, B).
half2(00, 00).
half2(s12 (X), s1(Y)) :- half2(X, Y).
plus3(00, Y, Y).
plus3(s1(X), Y, s1(Z)) :- plus3(X, Y, Z).
times3(00, Y, 00).
times3(s1(X), Y, Z) :- even2(s1(X), B), if4(B, s1(X), Y, Z).
if4(true0, s1(X), Y, Z) :- half2(s1(X), X1), times3(X1, Y, Y1), plus3(Y1, Y1, Z).
if4(false0, s1(X), Y, Z) :- times3(X, Y, U), plus3(Y, U, Z).


With regard to the inferred argument filtering the predicates were used in the following modes:
times3: (b,b,f)
even2: (b,f)
if4: (b,b,b,f)
half2: (b,f)
plus3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
times_3_in_gga3(x1, x2, x3)  =  times_3_in_gga2(x1, x2)
0_0  =  0_0
true_0  =  true_0
s_11(x1)  =  s_11(x1)
false_0  =  false_0
times_3_out_gga3(x1, x2, x3)  =  times_3_out_gga1(x3)
if_times_3_in_1_gga4(x1, x2, x3, x4)  =  if_times_3_in_1_gga3(x1, x2, x4)
even_2_in_ga2(x1, x2)  =  even_2_in_ga1(x1)
even_2_out_ga2(x1, x2)  =  even_2_out_ga1(x2)
if_even_2_in_1_ga3(x1, x2, x3)  =  if_even_2_in_1_ga1(x3)
if_times_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_times_3_in_2_gga1(x5)
if_4_in_ggga4(x1, x2, x3, x4)  =  if_4_in_ggga3(x1, x2, x3)
if_if_4_in_1_ggga4(x1, x2, x3, x4)  =  if_if_4_in_1_ggga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_if_4_in_2_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_2_ggga1(x5)
if_if_4_in_3_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_3_ggga1(x5)
plus_3_in_gga3(x1, x2, x3)  =  plus_3_in_gga2(x1, x2)
plus_3_out_gga3(x1, x2, x3)  =  plus_3_out_gga1(x3)
if_plus_3_in_1_gga4(x1, x2, x3, x4)  =  if_plus_3_in_1_gga1(x4)
if_4_out_ggga4(x1, x2, x3, x4)  =  if_4_out_ggga1(x4)
if_if_4_in_4_ggga4(x1, x2, x3, x4)  =  if_if_4_in_4_ggga2(x2, x4)
if_if_4_in_5_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_5_ggga1(x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof
  ↳ PrologToPiTRSProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
times_3_in_gga3(x1, x2, x3)  =  times_3_in_gga2(x1, x2)
0_0  =  0_0
true_0  =  true_0
s_11(x1)  =  s_11(x1)
false_0  =  false_0
times_3_out_gga3(x1, x2, x3)  =  times_3_out_gga1(x3)
if_times_3_in_1_gga4(x1, x2, x3, x4)  =  if_times_3_in_1_gga3(x1, x2, x4)
even_2_in_ga2(x1, x2)  =  even_2_in_ga1(x1)
even_2_out_ga2(x1, x2)  =  even_2_out_ga1(x2)
if_even_2_in_1_ga3(x1, x2, x3)  =  if_even_2_in_1_ga1(x3)
if_times_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_times_3_in_2_gga1(x5)
if_4_in_ggga4(x1, x2, x3, x4)  =  if_4_in_ggga3(x1, x2, x3)
if_if_4_in_1_ggga4(x1, x2, x3, x4)  =  if_if_4_in_1_ggga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_if_4_in_2_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_2_ggga1(x5)
if_if_4_in_3_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_3_ggga1(x5)
plus_3_in_gga3(x1, x2, x3)  =  plus_3_in_gga2(x1, x2)
plus_3_out_gga3(x1, x2, x3)  =  plus_3_out_gga1(x3)
if_plus_3_in_1_gga4(x1, x2, x3, x4)  =  if_plus_3_in_1_gga1(x4)
if_4_out_ggga4(x1, x2, x3, x4)  =  if_4_out_ggga1(x4)
if_if_4_in_4_ggga4(x1, x2, x3, x4)  =  if_if_4_in_4_ggga2(x2, x4)
if_if_4_in_5_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_5_ggga1(x5)


Pi DP problem:
The TRS P consists of the following rules:

TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_in_ga2(s_11(X), B))
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> EVEN_2_IN_GA2(s_11(X), B)
EVEN_2_IN_GA2(s_11(s_11(X)), B) -> IF_EVEN_2_IN_1_GA3(X, B, even_2_in_ga2(X, B))
EVEN_2_IN_GA2(s_11(s_11(X)), B) -> EVEN_2_IN_GA2(X, B)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_TIMES_3_IN_2_GGA5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_4_IN_GGGA4(B, s_11(X), Y, Z)
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> HALF_2_IN_GA2(s_11(X), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> TIMES_3_IN_GGA3(X1, Y, Y1)
IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> IF_IF_4_IN_3_GGGA5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> PLUS_3_IN_GGA3(Y1, Y1, Z)
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_PLUS_3_IN_1_GGA4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)
IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_in_gga3(X, Y, U))
IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> IF_IF_4_IN_5_GGGA5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> PLUS_3_IN_GGA3(Y, U, Z)

The TRS R consists of the following rules:

times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
times_3_in_gga3(x1, x2, x3)  =  times_3_in_gga2(x1, x2)
0_0  =  0_0
true_0  =  true_0
s_11(x1)  =  s_11(x1)
false_0  =  false_0
times_3_out_gga3(x1, x2, x3)  =  times_3_out_gga1(x3)
if_times_3_in_1_gga4(x1, x2, x3, x4)  =  if_times_3_in_1_gga3(x1, x2, x4)
even_2_in_ga2(x1, x2)  =  even_2_in_ga1(x1)
even_2_out_ga2(x1, x2)  =  even_2_out_ga1(x2)
if_even_2_in_1_ga3(x1, x2, x3)  =  if_even_2_in_1_ga1(x3)
if_times_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_times_3_in_2_gga1(x5)
if_4_in_ggga4(x1, x2, x3, x4)  =  if_4_in_ggga3(x1, x2, x3)
if_if_4_in_1_ggga4(x1, x2, x3, x4)  =  if_if_4_in_1_ggga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_if_4_in_2_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_2_ggga1(x5)
if_if_4_in_3_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_3_ggga1(x5)
plus_3_in_gga3(x1, x2, x3)  =  plus_3_in_gga2(x1, x2)
plus_3_out_gga3(x1, x2, x3)  =  plus_3_out_gga1(x3)
if_plus_3_in_1_gga4(x1, x2, x3, x4)  =  if_plus_3_in_1_gga1(x4)
if_4_out_ggga4(x1, x2, x3, x4)  =  if_4_out_ggga1(x4)
if_if_4_in_4_ggga4(x1, x2, x3, x4)  =  if_if_4_in_4_ggga2(x2, x4)
if_if_4_in_5_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_5_ggga1(x5)
IF_TIMES_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_TIMES_3_IN_1_GGA3(x1, x2, x4)
IF_4_IN_GGGA4(x1, x2, x3, x4)  =  IF_4_IN_GGGA3(x1, x2, x3)
IF_IF_4_IN_3_GGGA5(x1, x2, x3, x4, x5)  =  IF_IF_4_IN_3_GGGA1(x5)
TIMES_3_IN_GGA3(x1, x2, x3)  =  TIMES_3_IN_GGA2(x1, x2)
IF_IF_4_IN_1_GGGA4(x1, x2, x3, x4)  =  IF_IF_4_IN_1_GGGA2(x2, x4)
IF_HALF_2_IN_1_GA3(x1, x2, x3)  =  IF_HALF_2_IN_1_GA1(x3)
IF_EVEN_2_IN_1_GA3(x1, x2, x3)  =  IF_EVEN_2_IN_1_GA1(x3)
IF_IF_4_IN_2_GGGA5(x1, x2, x3, x4, x5)  =  IF_IF_4_IN_2_GGGA1(x5)
IF_TIMES_3_IN_2_GGA5(x1, x2, x3, x4, x5)  =  IF_TIMES_3_IN_2_GGA1(x5)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)
IF_IF_4_IN_5_GGGA5(x1, x2, x3, x4, x5)  =  IF_IF_4_IN_5_GGGA1(x5)
IF_PLUS_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_PLUS_3_IN_1_GGA1(x4)
EVEN_2_IN_GA2(x1, x2)  =  EVEN_2_IN_GA1(x1)
PLUS_3_IN_GGA3(x1, x2, x3)  =  PLUS_3_IN_GGA2(x1, x2)
IF_IF_4_IN_4_GGGA4(x1, x2, x3, x4)  =  IF_IF_4_IN_4_GGGA2(x2, x4)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_in_ga2(s_11(X), B))
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> EVEN_2_IN_GA2(s_11(X), B)
EVEN_2_IN_GA2(s_11(s_11(X)), B) -> IF_EVEN_2_IN_1_GA3(X, B, even_2_in_ga2(X, B))
EVEN_2_IN_GA2(s_11(s_11(X)), B) -> EVEN_2_IN_GA2(X, B)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_TIMES_3_IN_2_GGA5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_4_IN_GGGA4(B, s_11(X), Y, Z)
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> HALF_2_IN_GA2(s_11(X), X1)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> TIMES_3_IN_GGA3(X1, Y, Y1)
IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> IF_IF_4_IN_3_GGGA5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
IF_IF_4_IN_2_GGGA5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> PLUS_3_IN_GGA3(Y1, Y1, Z)
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_PLUS_3_IN_1_GGA4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)
IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_in_gga3(X, Y, U))
IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> IF_IF_4_IN_5_GGGA5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
IF_IF_4_IN_4_GGGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> PLUS_3_IN_GGA3(Y, U, Z)

The TRS R consists of the following rules:

times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
times_3_in_gga3(x1, x2, x3)  =  times_3_in_gga2(x1, x2)
0_0  =  0_0
true_0  =  true_0
s_11(x1)  =  s_11(x1)
false_0  =  false_0
times_3_out_gga3(x1, x2, x3)  =  times_3_out_gga1(x3)
if_times_3_in_1_gga4(x1, x2, x3, x4)  =  if_times_3_in_1_gga3(x1, x2, x4)
even_2_in_ga2(x1, x2)  =  even_2_in_ga1(x1)
even_2_out_ga2(x1, x2)  =  even_2_out_ga1(x2)
if_even_2_in_1_ga3(x1, x2, x3)  =  if_even_2_in_1_ga1(x3)
if_times_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_times_3_in_2_gga1(x5)
if_4_in_ggga4(x1, x2, x3, x4)  =  if_4_in_ggga3(x1, x2, x3)
if_if_4_in_1_ggga4(x1, x2, x3, x4)  =  if_if_4_in_1_ggga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_if_4_in_2_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_2_ggga1(x5)
if_if_4_in_3_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_3_ggga1(x5)
plus_3_in_gga3(x1, x2, x3)  =  plus_3_in_gga2(x1, x2)
plus_3_out_gga3(x1, x2, x3)  =  plus_3_out_gga1(x3)
if_plus_3_in_1_gga4(x1, x2, x3, x4)  =  if_plus_3_in_1_gga1(x4)
if_4_out_ggga4(x1, x2, x3, x4)  =  if_4_out_ggga1(x4)
if_if_4_in_4_ggga4(x1, x2, x3, x4)  =  if_if_4_in_4_ggga2(x2, x4)
if_if_4_in_5_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_5_ggga1(x5)
IF_TIMES_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_TIMES_3_IN_1_GGA3(x1, x2, x4)
IF_4_IN_GGGA4(x1, x2, x3, x4)  =  IF_4_IN_GGGA3(x1, x2, x3)
IF_IF_4_IN_3_GGGA5(x1, x2, x3, x4, x5)  =  IF_IF_4_IN_3_GGGA1(x5)
TIMES_3_IN_GGA3(x1, x2, x3)  =  TIMES_3_IN_GGA2(x1, x2)
IF_IF_4_IN_1_GGGA4(x1, x2, x3, x4)  =  IF_IF_4_IN_1_GGGA2(x2, x4)
IF_HALF_2_IN_1_GA3(x1, x2, x3)  =  IF_HALF_2_IN_1_GA1(x3)
IF_EVEN_2_IN_1_GA3(x1, x2, x3)  =  IF_EVEN_2_IN_1_GA1(x3)
IF_IF_4_IN_2_GGGA5(x1, x2, x3, x4, x5)  =  IF_IF_4_IN_2_GGGA1(x5)
IF_TIMES_3_IN_2_GGA5(x1, x2, x3, x4, x5)  =  IF_TIMES_3_IN_2_GGA1(x5)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)
IF_IF_4_IN_5_GGGA5(x1, x2, x3, x4, x5)  =  IF_IF_4_IN_5_GGGA1(x5)
IF_PLUS_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_PLUS_3_IN_1_GGA1(x4)
EVEN_2_IN_GA2(x1, x2)  =  EVEN_2_IN_GA1(x1)
PLUS_3_IN_GGA3(x1, x2, x3)  =  PLUS_3_IN_GGA2(x1, x2)
IF_IF_4_IN_4_GGGA4(x1, x2, x3, x4)  =  IF_IF_4_IN_4_GGGA2(x2, x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 4 SCCs with 12 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)

The TRS R consists of the following rules:

times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
times_3_in_gga3(x1, x2, x3)  =  times_3_in_gga2(x1, x2)
0_0  =  0_0
true_0  =  true_0
s_11(x1)  =  s_11(x1)
false_0  =  false_0
times_3_out_gga3(x1, x2, x3)  =  times_3_out_gga1(x3)
if_times_3_in_1_gga4(x1, x2, x3, x4)  =  if_times_3_in_1_gga3(x1, x2, x4)
even_2_in_ga2(x1, x2)  =  even_2_in_ga1(x1)
even_2_out_ga2(x1, x2)  =  even_2_out_ga1(x2)
if_even_2_in_1_ga3(x1, x2, x3)  =  if_even_2_in_1_ga1(x3)
if_times_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_times_3_in_2_gga1(x5)
if_4_in_ggga4(x1, x2, x3, x4)  =  if_4_in_ggga3(x1, x2, x3)
if_if_4_in_1_ggga4(x1, x2, x3, x4)  =  if_if_4_in_1_ggga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_if_4_in_2_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_2_ggga1(x5)
if_if_4_in_3_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_3_ggga1(x5)
plus_3_in_gga3(x1, x2, x3)  =  plus_3_in_gga2(x1, x2)
plus_3_out_gga3(x1, x2, x3)  =  plus_3_out_gga1(x3)
if_plus_3_in_1_gga4(x1, x2, x3, x4)  =  if_plus_3_in_1_gga1(x4)
if_4_out_ggga4(x1, x2, x3, x4)  =  if_4_out_ggga1(x4)
if_if_4_in_4_ggga4(x1, x2, x3, x4)  =  if_if_4_in_4_ggga2(x2, x4)
if_if_4_in_5_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_5_ggga1(x5)
PLUS_3_IN_GGA3(x1, x2, x3)  =  PLUS_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

PLUS_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> PLUS_3_IN_GGA3(X, Y, Z)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
PLUS_3_IN_GGA3(x1, x2, x3)  =  PLUS_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

PLUS_3_IN_GGA2(s_11(X), Y) -> PLUS_3_IN_GGA2(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {PLUS_3_IN_GGA2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)

The TRS R consists of the following rules:

times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
times_3_in_gga3(x1, x2, x3)  =  times_3_in_gga2(x1, x2)
0_0  =  0_0
true_0  =  true_0
s_11(x1)  =  s_11(x1)
false_0  =  false_0
times_3_out_gga3(x1, x2, x3)  =  times_3_out_gga1(x3)
if_times_3_in_1_gga4(x1, x2, x3, x4)  =  if_times_3_in_1_gga3(x1, x2, x4)
even_2_in_ga2(x1, x2)  =  even_2_in_ga1(x1)
even_2_out_ga2(x1, x2)  =  even_2_out_ga1(x2)
if_even_2_in_1_ga3(x1, x2, x3)  =  if_even_2_in_1_ga1(x3)
if_times_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_times_3_in_2_gga1(x5)
if_4_in_ggga4(x1, x2, x3, x4)  =  if_4_in_ggga3(x1, x2, x3)
if_if_4_in_1_ggga4(x1, x2, x3, x4)  =  if_if_4_in_1_ggga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_if_4_in_2_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_2_ggga1(x5)
if_if_4_in_3_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_3_ggga1(x5)
plus_3_in_gga3(x1, x2, x3)  =  plus_3_in_gga2(x1, x2)
plus_3_out_gga3(x1, x2, x3)  =  plus_3_out_gga1(x3)
if_plus_3_in_1_gga4(x1, x2, x3, x4)  =  if_plus_3_in_1_gga1(x4)
if_4_out_ggga4(x1, x2, x3, x4)  =  if_4_out_ggga1(x4)
if_if_4_in_4_ggga4(x1, x2, x3, x4)  =  if_if_4_in_4_ggga2(x2, x4)
if_if_4_in_5_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_5_ggga1(x5)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA1(s_11(s_11(X))) -> HALF_2_IN_GA1(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {HALF_2_IN_GA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

EVEN_2_IN_GA2(s_11(s_11(X)), B) -> EVEN_2_IN_GA2(X, B)

The TRS R consists of the following rules:

times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
times_3_in_gga3(x1, x2, x3)  =  times_3_in_gga2(x1, x2)
0_0  =  0_0
true_0  =  true_0
s_11(x1)  =  s_11(x1)
false_0  =  false_0
times_3_out_gga3(x1, x2, x3)  =  times_3_out_gga1(x3)
if_times_3_in_1_gga4(x1, x2, x3, x4)  =  if_times_3_in_1_gga3(x1, x2, x4)
even_2_in_ga2(x1, x2)  =  even_2_in_ga1(x1)
even_2_out_ga2(x1, x2)  =  even_2_out_ga1(x2)
if_even_2_in_1_ga3(x1, x2, x3)  =  if_even_2_in_1_ga1(x3)
if_times_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_times_3_in_2_gga1(x5)
if_4_in_ggga4(x1, x2, x3, x4)  =  if_4_in_ggga3(x1, x2, x3)
if_if_4_in_1_ggga4(x1, x2, x3, x4)  =  if_if_4_in_1_ggga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_if_4_in_2_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_2_ggga1(x5)
if_if_4_in_3_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_3_ggga1(x5)
plus_3_in_gga3(x1, x2, x3)  =  plus_3_in_gga2(x1, x2)
plus_3_out_gga3(x1, x2, x3)  =  plus_3_out_gga1(x3)
if_plus_3_in_1_gga4(x1, x2, x3, x4)  =  if_plus_3_in_1_gga1(x4)
if_4_out_ggga4(x1, x2, x3, x4)  =  if_4_out_ggga1(x4)
if_if_4_in_4_ggga4(x1, x2, x3, x4)  =  if_if_4_in_4_ggga2(x2, x4)
if_if_4_in_5_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_5_ggga1(x5)
EVEN_2_IN_GA2(x1, x2)  =  EVEN_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

EVEN_2_IN_GA2(s_11(s_11(X)), B) -> EVEN_2_IN_GA2(X, B)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
EVEN_2_IN_GA2(x1, x2)  =  EVEN_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

EVEN_2_IN_GA1(s_11(s_11(X))) -> EVEN_2_IN_GA1(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {EVEN_2_IN_GA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> TIMES_3_IN_GGA3(X1, Y, Y1)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_4_IN_GGGA4(B, s_11(X), Y, Z)
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_in_ga2(s_11(X), B))

The TRS R consists of the following rules:

times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
times_3_in_gga3(x1, x2, x3)  =  times_3_in_gga2(x1, x2)
0_0  =  0_0
true_0  =  true_0
s_11(x1)  =  s_11(x1)
false_0  =  false_0
times_3_out_gga3(x1, x2, x3)  =  times_3_out_gga1(x3)
if_times_3_in_1_gga4(x1, x2, x3, x4)  =  if_times_3_in_1_gga3(x1, x2, x4)
even_2_in_ga2(x1, x2)  =  even_2_in_ga1(x1)
even_2_out_ga2(x1, x2)  =  even_2_out_ga1(x2)
if_even_2_in_1_ga3(x1, x2, x3)  =  if_even_2_in_1_ga1(x3)
if_times_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_times_3_in_2_gga1(x5)
if_4_in_ggga4(x1, x2, x3, x4)  =  if_4_in_ggga3(x1, x2, x3)
if_if_4_in_1_ggga4(x1, x2, x3, x4)  =  if_if_4_in_1_ggga2(x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_if_4_in_2_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_2_ggga1(x5)
if_if_4_in_3_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_3_ggga1(x5)
plus_3_in_gga3(x1, x2, x3)  =  plus_3_in_gga2(x1, x2)
plus_3_out_gga3(x1, x2, x3)  =  plus_3_out_gga1(x3)
if_plus_3_in_1_gga4(x1, x2, x3, x4)  =  if_plus_3_in_1_gga1(x4)
if_4_out_ggga4(x1, x2, x3, x4)  =  if_4_out_ggga1(x4)
if_if_4_in_4_ggga4(x1, x2, x3, x4)  =  if_if_4_in_4_ggga2(x2, x4)
if_if_4_in_5_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_5_ggga1(x5)
IF_TIMES_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_TIMES_3_IN_1_GGA3(x1, x2, x4)
IF_4_IN_GGGA4(x1, x2, x3, x4)  =  IF_4_IN_GGGA3(x1, x2, x3)
TIMES_3_IN_GGA3(x1, x2, x3)  =  TIMES_3_IN_GGA2(x1, x2)
IF_IF_4_IN_1_GGGA4(x1, x2, x3, x4)  =  IF_IF_4_IN_1_GGGA2(x2, x4)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
  ↳ PrologToPiTRSProof

Pi DP problem:
The TRS P consists of the following rules:

IF_4_IN_GGGA4(false_0, s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_4_IN_GGGA4(true_0, s_11(X), Y, Z) -> IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
IF_IF_4_IN_1_GGGA4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> TIMES_3_IN_GGA3(X1, Y, Y1)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> IF_4_IN_GGGA4(B, s_11(X), Y, Z)
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, even_2_in_ga2(s_11(X), B))

The TRS R consists of the following rules:

half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)

The argument filtering Pi contains the following mapping:
0_0  =  0_0
true_0  =  true_0
s_11(x1)  =  s_11(x1)
false_0  =  false_0
even_2_in_ga2(x1, x2)  =  even_2_in_ga1(x1)
even_2_out_ga2(x1, x2)  =  even_2_out_ga1(x2)
if_even_2_in_1_ga3(x1, x2, x3)  =  if_even_2_in_1_ga1(x3)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
IF_TIMES_3_IN_1_GGA4(x1, x2, x3, x4)  =  IF_TIMES_3_IN_1_GGA3(x1, x2, x4)
IF_4_IN_GGGA4(x1, x2, x3, x4)  =  IF_4_IN_GGGA3(x1, x2, x3)
TIMES_3_IN_GGA3(x1, x2, x3)  =  TIMES_3_IN_GGA2(x1, x2)
IF_IF_4_IN_1_GGGA4(x1, x2, x3, x4)  =  IF_IF_4_IN_1_GGGA2(x2, x4)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPPoloProof
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

IF_4_IN_GGGA3(false_0, s_11(X), Y) -> TIMES_3_IN_GGA2(X, Y)
IF_4_IN_GGGA3(true_0, s_11(X), Y) -> IF_IF_4_IN_1_GGGA2(Y, half_2_in_ga1(s_11(X)))
IF_IF_4_IN_1_GGGA2(Y, half_2_out_ga1(X1)) -> TIMES_3_IN_GGA2(X1, Y)
IF_TIMES_3_IN_1_GGA3(X, Y, even_2_out_ga1(B)) -> IF_4_IN_GGGA3(B, s_11(X), Y)
TIMES_3_IN_GGA2(s_11(X), Y) -> IF_TIMES_3_IN_1_GGA3(X, Y, even_2_in_ga1(s_11(X)))

The TRS R consists of the following rules:

half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
even_2_in_ga1(s_11(0_0)) -> even_2_out_ga1(false_0)
even_2_in_ga1(s_11(s_11(X))) -> if_even_2_in_1_ga1(even_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
if_even_2_in_1_ga1(even_2_out_ga1(B)) -> even_2_out_ga1(B)
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
even_2_in_ga1(0_0) -> even_2_out_ga1(true_0)

The set Q consists of the following terms:

half_2_in_ga1(x0)
even_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)
if_even_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {TIMES_3_IN_GGA2, IF_4_IN_GGGA3, IF_IF_4_IN_1_GGGA2, IF_TIMES_3_IN_1_GGA3}.
By using a polynomial ordering, the following set of Dependency Pairs of this DP problem can be strictly oriented.

IF_4_IN_GGGA3(false_0, s_11(X), Y) -> TIMES_3_IN_GGA2(X, Y)
The remaining Dependency Pairs were at least non-strictly be oriented.

IF_4_IN_GGGA3(true_0, s_11(X), Y) -> IF_IF_4_IN_1_GGGA2(Y, half_2_in_ga1(s_11(X)))
IF_IF_4_IN_1_GGGA2(Y, half_2_out_ga1(X1)) -> TIMES_3_IN_GGA2(X1, Y)
IF_TIMES_3_IN_1_GGA3(X, Y, even_2_out_ga1(B)) -> IF_4_IN_GGGA3(B, s_11(X), Y)
TIMES_3_IN_GGA2(s_11(X), Y) -> IF_TIMES_3_IN_1_GGA3(X, Y, even_2_in_ga1(s_11(X)))
With the implicit AFS we had to orient the following set of usable rules non-strictly.

if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 0   
POL(if_half_2_in_1_ga1(x1)) = 1 + x1   
POL(TIMES_3_IN_GGA2(x1, x2)) = x1 + x2   
POL(false_0) = 0   
POL(half_2_in_ga1(x1)) = x1   
POL(true_0) = 0   
POL(IF_TIMES_3_IN_1_GGA3(x1, x2, x3)) = 1 + x1 + x2   
POL(half_2_out_ga1(x1)) = x1   
POL(IF_4_IN_GGGA3(x1, x2, x3)) = x2 + x3   
POL(if_even_2_in_1_ga1(x1)) = 0   
POL(even_2_in_ga1(x1)) = 0   
POL(even_2_out_ga1(x1)) = 0   
POL(IF_IF_4_IN_1_GGGA2(x1, x2)) = x1 + x2   
POL(s_11(x1)) = 1 + x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPPoloProof
QDP
                            ↳ QDPPoloProof
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

IF_4_IN_GGGA3(true_0, s_11(X), Y) -> IF_IF_4_IN_1_GGGA2(Y, half_2_in_ga1(s_11(X)))
IF_IF_4_IN_1_GGGA2(Y, half_2_out_ga1(X1)) -> TIMES_3_IN_GGA2(X1, Y)
IF_TIMES_3_IN_1_GGA3(X, Y, even_2_out_ga1(B)) -> IF_4_IN_GGGA3(B, s_11(X), Y)
TIMES_3_IN_GGA2(s_11(X), Y) -> IF_TIMES_3_IN_1_GGA3(X, Y, even_2_in_ga1(s_11(X)))

The TRS R consists of the following rules:

half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
even_2_in_ga1(s_11(0_0)) -> even_2_out_ga1(false_0)
even_2_in_ga1(s_11(s_11(X))) -> if_even_2_in_1_ga1(even_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
if_even_2_in_1_ga1(even_2_out_ga1(B)) -> even_2_out_ga1(B)
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
even_2_in_ga1(0_0) -> even_2_out_ga1(true_0)

The set Q consists of the following terms:

half_2_in_ga1(x0)
even_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)
if_even_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_IF_4_IN_1_GGGA2, IF_4_IN_GGGA3, TIMES_3_IN_GGA2, IF_TIMES_3_IN_1_GGA3}.
By using a polynomial ordering, the following set of Dependency Pairs of this DP problem can be strictly oriented.

TIMES_3_IN_GGA2(s_11(X), Y) -> IF_TIMES_3_IN_1_GGA3(X, Y, even_2_in_ga1(s_11(X)))
The remaining Dependency Pairs were at least non-strictly be oriented.

IF_4_IN_GGGA3(true_0, s_11(X), Y) -> IF_IF_4_IN_1_GGGA2(Y, half_2_in_ga1(s_11(X)))
IF_IF_4_IN_1_GGGA2(Y, half_2_out_ga1(X1)) -> TIMES_3_IN_GGA2(X1, Y)
IF_TIMES_3_IN_1_GGA3(X, Y, even_2_out_ga1(B)) -> IF_4_IN_GGGA3(B, s_11(X), Y)
With the implicit AFS we had to orient the following set of usable rules non-strictly.

if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 0   
POL(if_half_2_in_1_ga1(x1)) = 2 + x1   
POL(TIMES_3_IN_GGA2(x1, x2)) = 2·x1 + x2   
POL(false_0) = 0   
POL(half_2_in_ga1(x1)) = x1   
POL(true_0) = 0   
POL(IF_TIMES_3_IN_1_GGA3(x1, x2, x3)) = 1 + x1 + x2   
POL(half_2_out_ga1(x1)) = 2·x1   
POL(IF_4_IN_GGGA3(x1, x2, x3)) = x2 + x3   
POL(if_even_2_in_1_ga1(x1)) = 0   
POL(even_2_in_ga1(x1)) = 0   
POL(even_2_out_ga1(x1)) = 0   
POL(IF_IF_4_IN_1_GGGA2(x1, x2)) = x1 + x2   
POL(s_11(x1)) = 1 + x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ QDPPoloProof
                          ↳ QDP
                            ↳ QDPPoloProof
QDP
                                ↳ DependencyGraphProof
  ↳ PrologToPiTRSProof

Q DP problem:
The TRS P consists of the following rules:

IF_4_IN_GGGA3(true_0, s_11(X), Y) -> IF_IF_4_IN_1_GGGA2(Y, half_2_in_ga1(s_11(X)))
IF_IF_4_IN_1_GGGA2(Y, half_2_out_ga1(X1)) -> TIMES_3_IN_GGA2(X1, Y)
IF_TIMES_3_IN_1_GGA3(X, Y, even_2_out_ga1(B)) -> IF_4_IN_GGGA3(B, s_11(X), Y)

The TRS R consists of the following rules:

half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
even_2_in_ga1(s_11(0_0)) -> even_2_out_ga1(false_0)
even_2_in_ga1(s_11(s_11(X))) -> if_even_2_in_1_ga1(even_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
if_even_2_in_1_ga1(even_2_out_ga1(B)) -> even_2_out_ga1(B)
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
even_2_in_ga1(0_0) -> even_2_out_ga1(true_0)

The set Q consists of the following terms:

half_2_in_ga1(x0)
even_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)
if_even_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {IF_IF_4_IN_1_GGGA2, IF_4_IN_GGGA3, TIMES_3_IN_GGA2, IF_TIMES_3_IN_1_GGA3}.
The approximation of the Dependency Graph contains 0 SCCs with 3 less nodes.
With regard to the inferred argument filtering the predicates were used in the following modes:
times3: (b,b,f)
even2: (b,f)
if4: (b,b,b,f)
half2: (b,f)
plus3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
times_3_in_gga3(x1, x2, x3)  =  times_3_in_gga2(x1, x2)
0_0  =  0_0
true_0  =  true_0
s_11(x1)  =  s_11(x1)
false_0  =  false_0
times_3_out_gga3(x1, x2, x3)  =  times_3_out_gga3(x1, x2, x3)
if_times_3_in_1_gga4(x1, x2, x3, x4)  =  if_times_3_in_1_gga3(x1, x2, x4)
even_2_in_ga2(x1, x2)  =  even_2_in_ga1(x1)
even_2_out_ga2(x1, x2)  =  even_2_out_ga2(x1, x2)
if_even_2_in_1_ga3(x1, x2, x3)  =  if_even_2_in_1_ga2(x1, x3)
if_times_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_times_3_in_2_gga3(x1, x2, x5)
if_4_in_ggga4(x1, x2, x3, x4)  =  if_4_in_ggga3(x1, x2, x3)
if_if_4_in_1_ggga4(x1, x2, x3, x4)  =  if_if_4_in_1_ggga3(x1, x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga2(x1, x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga2(x1, x3)
if_if_4_in_2_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_2_ggga3(x1, x2, x5)
if_if_4_in_3_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_3_ggga3(x1, x2, x5)
plus_3_in_gga3(x1, x2, x3)  =  plus_3_in_gga2(x1, x2)
plus_3_out_gga3(x1, x2, x3)  =  plus_3_out_gga3(x1, x2, x3)
if_plus_3_in_1_gga4(x1, x2, x3, x4)  =  if_plus_3_in_1_gga3(x1, x2, x4)
if_4_out_ggga4(x1, x2, x3, x4)  =  if_4_out_ggga4(x1, x2, x3, x4)
if_if_4_in_4_ggga4(x1, x2, x3, x4)  =  if_if_4_in_4_ggga3(x1, x2, x4)
if_if_4_in_5_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_5_ggga3(x1, x2, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
  ↳ PrologToPiTRSProof
PiTRS

Pi-finite rewrite system:
The TRS R consists of the following rules:

times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, even_2_in_ga2(s_11(X), B))
even_2_in_ga2(0_0, true_0) -> even_2_out_ga2(0_0, true_0)
even_2_in_ga2(s_11(0_0), false_0) -> even_2_out_ga2(s_11(0_0), false_0)
even_2_in_ga2(s_11(s_11(X)), B) -> if_even_2_in_1_ga3(X, B, even_2_in_ga2(X, B))
if_even_2_in_1_ga3(X, B, even_2_out_ga2(X, B)) -> even_2_out_ga2(s_11(s_11(X)), B)
if_times_3_in_1_gga4(X, Y, Z, even_2_out_ga2(s_11(X), B)) -> if_times_3_in_2_gga5(X, Y, Z, B, if_4_in_ggga4(B, s_11(X), Y, Z))
if_4_in_ggga4(true_0, s_11(X), Y, Z) -> if_if_4_in_1_ggga4(X, Y, Z, half_2_in_ga2(s_11(X), X1))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_if_4_in_1_ggga4(X, Y, Z, half_2_out_ga2(s_11(X), X1)) -> if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_in_gga3(X1, Y, Y1))
if_if_4_in_2_ggga5(X, Y, Z, X1, times_3_out_gga3(X1, Y, Y1)) -> if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_in_gga3(Y1, Y1, Z))
plus_3_in_gga3(0_0, Y, Y) -> plus_3_out_gga3(0_0, Y, Y)
plus_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gga4(X, Y, Z, plus_3_in_gga3(X, Y, Z))
if_plus_3_in_1_gga4(X, Y, Z, plus_3_out_gga3(X, Y, Z)) -> plus_3_out_gga3(s_11(X), Y, s_11(Z))
if_if_4_in_3_ggga5(X, Y, Z, Y1, plus_3_out_gga3(Y1, Y1, Z)) -> if_4_out_ggga4(true_0, s_11(X), Y, Z)
if_4_in_ggga4(false_0, s_11(X), Y, Z) -> if_if_4_in_4_ggga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_if_4_in_4_ggga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_in_gga3(Y, U, Z))
if_if_4_in_5_ggga5(X, Y, Z, U, plus_3_out_gga3(Y, U, Z)) -> if_4_out_ggga4(false_0, s_11(X), Y, Z)
if_times_3_in_2_gga5(X, Y, Z, B, if_4_out_ggga4(B, s_11(X), Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)

The argument filtering Pi contains the following mapping:
times_3_in_gga3(x1, x2, x3)  =  times_3_in_gga2(x1, x2)
0_0  =  0_0
true_0  =  true_0
s_11(x1)  =  s_11(x1)
false_0  =  false_0
times_3_out_gga3(x1, x2, x3)  =  times_3_out_gga3(x1, x2, x3)
if_times_3_in_1_gga4(x1, x2, x3, x4)  =  if_times_3_in_1_gga3(x1, x2, x4)
even_2_in_ga2(x1, x2)  =  even_2_in_ga1(x1)
even_2_out_ga2(x1, x2)  =  even_2_out_ga2(x1, x2)
if_even_2_in_1_ga3(x1, x2, x3)  =  if_even_2_in_1_ga2(x1, x3)
if_times_3_in_2_gga5(x1, x2, x3, x4, x5)  =  if_times_3_in_2_gga3(x1, x2, x5)
if_4_in_ggga4(x1, x2, x3, x4)  =  if_4_in_ggga3(x1, x2, x3)
if_if_4_in_1_ggga4(x1, x2, x3, x4)  =  if_if_4_in_1_ggga3(x1, x2, x4)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga2(x1, x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga2(x1, x3)
if_if_4_in_2_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_2_ggga3(x1, x2, x5)
if_if_4_in_3_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_3_ggga3(x1, x2, x5)
plus_3_in_gga3(x1, x2, x3)  =  plus_3_in_gga2(x1, x2)
plus_3_out_gga3(x1, x2, x3)  =  plus_3_out_gga3(x1, x2, x3)
if_plus_3_in_1_gga4(x1, x2, x3, x4)  =  if_plus_3_in_1_gga3(x1, x2, x4)
if_4_out_ggga4(x1, x2, x3, x4)  =  if_4_out_ggga4(x1, x2, x3, x4)
if_if_4_in_4_ggga4(x1, x2, x3, x4)  =  if_if_4_in_4_ggga3(x1, x2, x4)
if_if_4_in_5_ggga5(x1, x2, x3, x4, x5)  =  if_if_4_in_5_ggga3(x1, x2, x5)