↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
plus3: (b,f,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
plus_3_in_gaa3(0_0, Y, Y) -> plus_3_out_gaa3(0_0, Y, Y)
plus_3_in_gaa3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gaa4(X, Y, Z, p_2_in_ga2(s_11(X), U))
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_plus_3_in_1_gaa4(X, Y, Z, p_2_out_ga2(s_11(X), U)) -> if_plus_3_in_2_gaa5(X, Y, Z, U, plus_3_in_gaa3(U, Y, Z))
if_plus_3_in_2_gaa5(X, Y, Z, U, plus_3_out_gaa3(U, Y, Z)) -> plus_3_out_gaa3(s_11(X), Y, s_11(Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
plus_3_in_gaa3(0_0, Y, Y) -> plus_3_out_gaa3(0_0, Y, Y)
plus_3_in_gaa3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gaa4(X, Y, Z, p_2_in_ga2(s_11(X), U))
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_plus_3_in_1_gaa4(X, Y, Z, p_2_out_ga2(s_11(X), U)) -> if_plus_3_in_2_gaa5(X, Y, Z, U, plus_3_in_gaa3(U, Y, Z))
if_plus_3_in_2_gaa5(X, Y, Z, U, plus_3_out_gaa3(U, Y, Z)) -> plus_3_out_gaa3(s_11(X), Y, s_11(Z))
PLUS_3_IN_GAA3(s_11(X), Y, s_11(Z)) -> IF_PLUS_3_IN_1_GAA4(X, Y, Z, p_2_in_ga2(s_11(X), U))
PLUS_3_IN_GAA3(s_11(X), Y, s_11(Z)) -> P_2_IN_GA2(s_11(X), U)
IF_PLUS_3_IN_1_GAA4(X, Y, Z, p_2_out_ga2(s_11(X), U)) -> IF_PLUS_3_IN_2_GAA5(X, Y, Z, U, plus_3_in_gaa3(U, Y, Z))
IF_PLUS_3_IN_1_GAA4(X, Y, Z, p_2_out_ga2(s_11(X), U)) -> PLUS_3_IN_GAA3(U, Y, Z)
plus_3_in_gaa3(0_0, Y, Y) -> plus_3_out_gaa3(0_0, Y, Y)
plus_3_in_gaa3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gaa4(X, Y, Z, p_2_in_ga2(s_11(X), U))
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_plus_3_in_1_gaa4(X, Y, Z, p_2_out_ga2(s_11(X), U)) -> if_plus_3_in_2_gaa5(X, Y, Z, U, plus_3_in_gaa3(U, Y, Z))
if_plus_3_in_2_gaa5(X, Y, Z, U, plus_3_out_gaa3(U, Y, Z)) -> plus_3_out_gaa3(s_11(X), Y, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
PLUS_3_IN_GAA3(s_11(X), Y, s_11(Z)) -> IF_PLUS_3_IN_1_GAA4(X, Y, Z, p_2_in_ga2(s_11(X), U))
PLUS_3_IN_GAA3(s_11(X), Y, s_11(Z)) -> P_2_IN_GA2(s_11(X), U)
IF_PLUS_3_IN_1_GAA4(X, Y, Z, p_2_out_ga2(s_11(X), U)) -> IF_PLUS_3_IN_2_GAA5(X, Y, Z, U, plus_3_in_gaa3(U, Y, Z))
IF_PLUS_3_IN_1_GAA4(X, Y, Z, p_2_out_ga2(s_11(X), U)) -> PLUS_3_IN_GAA3(U, Y, Z)
plus_3_in_gaa3(0_0, Y, Y) -> plus_3_out_gaa3(0_0, Y, Y)
plus_3_in_gaa3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gaa4(X, Y, Z, p_2_in_ga2(s_11(X), U))
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_plus_3_in_1_gaa4(X, Y, Z, p_2_out_ga2(s_11(X), U)) -> if_plus_3_in_2_gaa5(X, Y, Z, U, plus_3_in_gaa3(U, Y, Z))
if_plus_3_in_2_gaa5(X, Y, Z, U, plus_3_out_gaa3(U, Y, Z)) -> plus_3_out_gaa3(s_11(X), Y, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
IF_PLUS_3_IN_1_GAA4(X, Y, Z, p_2_out_ga2(s_11(X), U)) -> PLUS_3_IN_GAA3(U, Y, Z)
PLUS_3_IN_GAA3(s_11(X), Y, s_11(Z)) -> IF_PLUS_3_IN_1_GAA4(X, Y, Z, p_2_in_ga2(s_11(X), U))
plus_3_in_gaa3(0_0, Y, Y) -> plus_3_out_gaa3(0_0, Y, Y)
plus_3_in_gaa3(s_11(X), Y, s_11(Z)) -> if_plus_3_in_1_gaa4(X, Y, Z, p_2_in_ga2(s_11(X), U))
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_plus_3_in_1_gaa4(X, Y, Z, p_2_out_ga2(s_11(X), U)) -> if_plus_3_in_2_gaa5(X, Y, Z, U, plus_3_in_gaa3(U, Y, Z))
if_plus_3_in_2_gaa5(X, Y, Z, U, plus_3_out_gaa3(U, Y, Z)) -> plus_3_out_gaa3(s_11(X), Y, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_PLUS_3_IN_1_GAA4(X, Y, Z, p_2_out_ga2(s_11(X), U)) -> PLUS_3_IN_GAA3(U, Y, Z)
PLUS_3_IN_GAA3(s_11(X), Y, s_11(Z)) -> IF_PLUS_3_IN_1_GAA4(X, Y, Z, p_2_in_ga2(s_11(X), U))
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
IF_PLUS_3_IN_1_GAA1(p_2_out_ga1(U)) -> PLUS_3_IN_GAA1(U)
PLUS_3_IN_GAA1(s_11(X)) -> IF_PLUS_3_IN_1_GAA1(p_2_in_ga1(s_11(X)))
p_2_in_ga1(s_11(X)) -> p_2_out_ga1(X)
p_2_in_ga1(x0)
IF_PLUS_3_IN_1_GAA1(p_2_out_ga1(U)) -> PLUS_3_IN_GAA1(U)
p_2_in_ga1(s_11(X)) -> p_2_out_ga1(X)
POL(p_2_out_ga1(x1)) = 1 + x1
POL(p_2_in_ga1(x1)) = x1
POL(s_11(x1)) = 2 + x1
POL(IF_PLUS_3_IN_1_GAA1(x1)) = x1
POL(PLUS_3_IN_GAA1(x1)) = x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
PLUS_3_IN_GAA1(s_11(X)) -> IF_PLUS_3_IN_1_GAA1(p_2_in_ga1(s_11(X)))
p_2_in_ga1(x0)