↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
perm12: (b,b)
eq_len12: (b,b)
same_sets2: (b,b)
member2: (b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
perm1_2_in_gg2(L, M) -> if_perm1_2_in_1_gg3(L, M, eq_len1_2_in_gg2(L, M))
eq_len1_2_in_gg2([]_0, []_0) -> eq_len1_2_out_gg2([]_0, []_0)
eq_len1_2_in_gg2(._22(underscore, Xs), ._22(underscore1, Ys)) -> if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_in_gg2(Xs, Ys))
if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_out_gg2(Xs, Ys)) -> eq_len1_2_out_gg2(._22(underscore, Xs), ._22(underscore1, Ys))
if_perm1_2_in_1_gg3(L, M, eq_len1_2_out_gg2(L, M)) -> if_perm1_2_in_2_gg3(L, M, same_sets_2_in_gg2(L, M))
same_sets_2_in_gg2([]_0, underscore4) -> same_sets_2_out_gg2([]_0, underscore4)
same_sets_2_in_gg2(._22(X, Xs), L) -> if_same_sets_2_in_1_gg4(X, Xs, L, member_2_in_gg2(X, L))
member_2_in_gg2(X, ._22(X, underscore2)) -> member_2_out_gg2(X, ._22(X, underscore2))
member_2_in_gg2(X, ._22(underscore3, T)) -> if_member_2_in_1_gg4(X, underscore3, T, member_2_in_gg2(X, T))
if_member_2_in_1_gg4(X, underscore3, T, member_2_out_gg2(X, T)) -> member_2_out_gg2(X, ._22(underscore3, T))
if_same_sets_2_in_1_gg4(X, Xs, L, member_2_out_gg2(X, L)) -> if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_in_gg2(Xs, L))
if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_out_gg2(Xs, L)) -> same_sets_2_out_gg2(._22(X, Xs), L)
if_perm1_2_in_2_gg3(L, M, same_sets_2_out_gg2(L, M)) -> perm1_2_out_gg2(L, M)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
perm1_2_in_gg2(L, M) -> if_perm1_2_in_1_gg3(L, M, eq_len1_2_in_gg2(L, M))
eq_len1_2_in_gg2([]_0, []_0) -> eq_len1_2_out_gg2([]_0, []_0)
eq_len1_2_in_gg2(._22(underscore, Xs), ._22(underscore1, Ys)) -> if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_in_gg2(Xs, Ys))
if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_out_gg2(Xs, Ys)) -> eq_len1_2_out_gg2(._22(underscore, Xs), ._22(underscore1, Ys))
if_perm1_2_in_1_gg3(L, M, eq_len1_2_out_gg2(L, M)) -> if_perm1_2_in_2_gg3(L, M, same_sets_2_in_gg2(L, M))
same_sets_2_in_gg2([]_0, underscore4) -> same_sets_2_out_gg2([]_0, underscore4)
same_sets_2_in_gg2(._22(X, Xs), L) -> if_same_sets_2_in_1_gg4(X, Xs, L, member_2_in_gg2(X, L))
member_2_in_gg2(X, ._22(X, underscore2)) -> member_2_out_gg2(X, ._22(X, underscore2))
member_2_in_gg2(X, ._22(underscore3, T)) -> if_member_2_in_1_gg4(X, underscore3, T, member_2_in_gg2(X, T))
if_member_2_in_1_gg4(X, underscore3, T, member_2_out_gg2(X, T)) -> member_2_out_gg2(X, ._22(underscore3, T))
if_same_sets_2_in_1_gg4(X, Xs, L, member_2_out_gg2(X, L)) -> if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_in_gg2(Xs, L))
if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_out_gg2(Xs, L)) -> same_sets_2_out_gg2(._22(X, Xs), L)
if_perm1_2_in_2_gg3(L, M, same_sets_2_out_gg2(L, M)) -> perm1_2_out_gg2(L, M)
PERM1_2_IN_GG2(L, M) -> IF_PERM1_2_IN_1_GG3(L, M, eq_len1_2_in_gg2(L, M))
PERM1_2_IN_GG2(L, M) -> EQ_LEN1_2_IN_GG2(L, M)
EQ_LEN1_2_IN_GG2(._22(underscore, Xs), ._22(underscore1, Ys)) -> IF_EQ_LEN1_2_IN_1_GG5(underscore, Xs, underscore1, Ys, eq_len1_2_in_gg2(Xs, Ys))
EQ_LEN1_2_IN_GG2(._22(underscore, Xs), ._22(underscore1, Ys)) -> EQ_LEN1_2_IN_GG2(Xs, Ys)
IF_PERM1_2_IN_1_GG3(L, M, eq_len1_2_out_gg2(L, M)) -> IF_PERM1_2_IN_2_GG3(L, M, same_sets_2_in_gg2(L, M))
IF_PERM1_2_IN_1_GG3(L, M, eq_len1_2_out_gg2(L, M)) -> SAME_SETS_2_IN_GG2(L, M)
SAME_SETS_2_IN_GG2(._22(X, Xs), L) -> IF_SAME_SETS_2_IN_1_GG4(X, Xs, L, member_2_in_gg2(X, L))
SAME_SETS_2_IN_GG2(._22(X, Xs), L) -> MEMBER_2_IN_GG2(X, L)
MEMBER_2_IN_GG2(X, ._22(underscore3, T)) -> IF_MEMBER_2_IN_1_GG4(X, underscore3, T, member_2_in_gg2(X, T))
MEMBER_2_IN_GG2(X, ._22(underscore3, T)) -> MEMBER_2_IN_GG2(X, T)
IF_SAME_SETS_2_IN_1_GG4(X, Xs, L, member_2_out_gg2(X, L)) -> IF_SAME_SETS_2_IN_2_GG4(X, Xs, L, same_sets_2_in_gg2(Xs, L))
IF_SAME_SETS_2_IN_1_GG4(X, Xs, L, member_2_out_gg2(X, L)) -> SAME_SETS_2_IN_GG2(Xs, L)
perm1_2_in_gg2(L, M) -> if_perm1_2_in_1_gg3(L, M, eq_len1_2_in_gg2(L, M))
eq_len1_2_in_gg2([]_0, []_0) -> eq_len1_2_out_gg2([]_0, []_0)
eq_len1_2_in_gg2(._22(underscore, Xs), ._22(underscore1, Ys)) -> if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_in_gg2(Xs, Ys))
if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_out_gg2(Xs, Ys)) -> eq_len1_2_out_gg2(._22(underscore, Xs), ._22(underscore1, Ys))
if_perm1_2_in_1_gg3(L, M, eq_len1_2_out_gg2(L, M)) -> if_perm1_2_in_2_gg3(L, M, same_sets_2_in_gg2(L, M))
same_sets_2_in_gg2([]_0, underscore4) -> same_sets_2_out_gg2([]_0, underscore4)
same_sets_2_in_gg2(._22(X, Xs), L) -> if_same_sets_2_in_1_gg4(X, Xs, L, member_2_in_gg2(X, L))
member_2_in_gg2(X, ._22(X, underscore2)) -> member_2_out_gg2(X, ._22(X, underscore2))
member_2_in_gg2(X, ._22(underscore3, T)) -> if_member_2_in_1_gg4(X, underscore3, T, member_2_in_gg2(X, T))
if_member_2_in_1_gg4(X, underscore3, T, member_2_out_gg2(X, T)) -> member_2_out_gg2(X, ._22(underscore3, T))
if_same_sets_2_in_1_gg4(X, Xs, L, member_2_out_gg2(X, L)) -> if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_in_gg2(Xs, L))
if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_out_gg2(Xs, L)) -> same_sets_2_out_gg2(._22(X, Xs), L)
if_perm1_2_in_2_gg3(L, M, same_sets_2_out_gg2(L, M)) -> perm1_2_out_gg2(L, M)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
PERM1_2_IN_GG2(L, M) -> IF_PERM1_2_IN_1_GG3(L, M, eq_len1_2_in_gg2(L, M))
PERM1_2_IN_GG2(L, M) -> EQ_LEN1_2_IN_GG2(L, M)
EQ_LEN1_2_IN_GG2(._22(underscore, Xs), ._22(underscore1, Ys)) -> IF_EQ_LEN1_2_IN_1_GG5(underscore, Xs, underscore1, Ys, eq_len1_2_in_gg2(Xs, Ys))
EQ_LEN1_2_IN_GG2(._22(underscore, Xs), ._22(underscore1, Ys)) -> EQ_LEN1_2_IN_GG2(Xs, Ys)
IF_PERM1_2_IN_1_GG3(L, M, eq_len1_2_out_gg2(L, M)) -> IF_PERM1_2_IN_2_GG3(L, M, same_sets_2_in_gg2(L, M))
IF_PERM1_2_IN_1_GG3(L, M, eq_len1_2_out_gg2(L, M)) -> SAME_SETS_2_IN_GG2(L, M)
SAME_SETS_2_IN_GG2(._22(X, Xs), L) -> IF_SAME_SETS_2_IN_1_GG4(X, Xs, L, member_2_in_gg2(X, L))
SAME_SETS_2_IN_GG2(._22(X, Xs), L) -> MEMBER_2_IN_GG2(X, L)
MEMBER_2_IN_GG2(X, ._22(underscore3, T)) -> IF_MEMBER_2_IN_1_GG4(X, underscore3, T, member_2_in_gg2(X, T))
MEMBER_2_IN_GG2(X, ._22(underscore3, T)) -> MEMBER_2_IN_GG2(X, T)
IF_SAME_SETS_2_IN_1_GG4(X, Xs, L, member_2_out_gg2(X, L)) -> IF_SAME_SETS_2_IN_2_GG4(X, Xs, L, same_sets_2_in_gg2(Xs, L))
IF_SAME_SETS_2_IN_1_GG4(X, Xs, L, member_2_out_gg2(X, L)) -> SAME_SETS_2_IN_GG2(Xs, L)
perm1_2_in_gg2(L, M) -> if_perm1_2_in_1_gg3(L, M, eq_len1_2_in_gg2(L, M))
eq_len1_2_in_gg2([]_0, []_0) -> eq_len1_2_out_gg2([]_0, []_0)
eq_len1_2_in_gg2(._22(underscore, Xs), ._22(underscore1, Ys)) -> if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_in_gg2(Xs, Ys))
if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_out_gg2(Xs, Ys)) -> eq_len1_2_out_gg2(._22(underscore, Xs), ._22(underscore1, Ys))
if_perm1_2_in_1_gg3(L, M, eq_len1_2_out_gg2(L, M)) -> if_perm1_2_in_2_gg3(L, M, same_sets_2_in_gg2(L, M))
same_sets_2_in_gg2([]_0, underscore4) -> same_sets_2_out_gg2([]_0, underscore4)
same_sets_2_in_gg2(._22(X, Xs), L) -> if_same_sets_2_in_1_gg4(X, Xs, L, member_2_in_gg2(X, L))
member_2_in_gg2(X, ._22(X, underscore2)) -> member_2_out_gg2(X, ._22(X, underscore2))
member_2_in_gg2(X, ._22(underscore3, T)) -> if_member_2_in_1_gg4(X, underscore3, T, member_2_in_gg2(X, T))
if_member_2_in_1_gg4(X, underscore3, T, member_2_out_gg2(X, T)) -> member_2_out_gg2(X, ._22(underscore3, T))
if_same_sets_2_in_1_gg4(X, Xs, L, member_2_out_gg2(X, L)) -> if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_in_gg2(Xs, L))
if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_out_gg2(Xs, L)) -> same_sets_2_out_gg2(._22(X, Xs), L)
if_perm1_2_in_2_gg3(L, M, same_sets_2_out_gg2(L, M)) -> perm1_2_out_gg2(L, M)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
MEMBER_2_IN_GG2(X, ._22(underscore3, T)) -> MEMBER_2_IN_GG2(X, T)
perm1_2_in_gg2(L, M) -> if_perm1_2_in_1_gg3(L, M, eq_len1_2_in_gg2(L, M))
eq_len1_2_in_gg2([]_0, []_0) -> eq_len1_2_out_gg2([]_0, []_0)
eq_len1_2_in_gg2(._22(underscore, Xs), ._22(underscore1, Ys)) -> if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_in_gg2(Xs, Ys))
if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_out_gg2(Xs, Ys)) -> eq_len1_2_out_gg2(._22(underscore, Xs), ._22(underscore1, Ys))
if_perm1_2_in_1_gg3(L, M, eq_len1_2_out_gg2(L, M)) -> if_perm1_2_in_2_gg3(L, M, same_sets_2_in_gg2(L, M))
same_sets_2_in_gg2([]_0, underscore4) -> same_sets_2_out_gg2([]_0, underscore4)
same_sets_2_in_gg2(._22(X, Xs), L) -> if_same_sets_2_in_1_gg4(X, Xs, L, member_2_in_gg2(X, L))
member_2_in_gg2(X, ._22(X, underscore2)) -> member_2_out_gg2(X, ._22(X, underscore2))
member_2_in_gg2(X, ._22(underscore3, T)) -> if_member_2_in_1_gg4(X, underscore3, T, member_2_in_gg2(X, T))
if_member_2_in_1_gg4(X, underscore3, T, member_2_out_gg2(X, T)) -> member_2_out_gg2(X, ._22(underscore3, T))
if_same_sets_2_in_1_gg4(X, Xs, L, member_2_out_gg2(X, L)) -> if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_in_gg2(Xs, L))
if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_out_gg2(Xs, L)) -> same_sets_2_out_gg2(._22(X, Xs), L)
if_perm1_2_in_2_gg3(L, M, same_sets_2_out_gg2(L, M)) -> perm1_2_out_gg2(L, M)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
MEMBER_2_IN_GG2(X, ._22(underscore3, T)) -> MEMBER_2_IN_GG2(X, T)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
MEMBER_2_IN_GG2(X, ._22(underscore3, T)) -> MEMBER_2_IN_GG2(X, T)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
IF_SAME_SETS_2_IN_1_GG4(X, Xs, L, member_2_out_gg2(X, L)) -> SAME_SETS_2_IN_GG2(Xs, L)
SAME_SETS_2_IN_GG2(._22(X, Xs), L) -> IF_SAME_SETS_2_IN_1_GG4(X, Xs, L, member_2_in_gg2(X, L))
perm1_2_in_gg2(L, M) -> if_perm1_2_in_1_gg3(L, M, eq_len1_2_in_gg2(L, M))
eq_len1_2_in_gg2([]_0, []_0) -> eq_len1_2_out_gg2([]_0, []_0)
eq_len1_2_in_gg2(._22(underscore, Xs), ._22(underscore1, Ys)) -> if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_in_gg2(Xs, Ys))
if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_out_gg2(Xs, Ys)) -> eq_len1_2_out_gg2(._22(underscore, Xs), ._22(underscore1, Ys))
if_perm1_2_in_1_gg3(L, M, eq_len1_2_out_gg2(L, M)) -> if_perm1_2_in_2_gg3(L, M, same_sets_2_in_gg2(L, M))
same_sets_2_in_gg2([]_0, underscore4) -> same_sets_2_out_gg2([]_0, underscore4)
same_sets_2_in_gg2(._22(X, Xs), L) -> if_same_sets_2_in_1_gg4(X, Xs, L, member_2_in_gg2(X, L))
member_2_in_gg2(X, ._22(X, underscore2)) -> member_2_out_gg2(X, ._22(X, underscore2))
member_2_in_gg2(X, ._22(underscore3, T)) -> if_member_2_in_1_gg4(X, underscore3, T, member_2_in_gg2(X, T))
if_member_2_in_1_gg4(X, underscore3, T, member_2_out_gg2(X, T)) -> member_2_out_gg2(X, ._22(underscore3, T))
if_same_sets_2_in_1_gg4(X, Xs, L, member_2_out_gg2(X, L)) -> if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_in_gg2(Xs, L))
if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_out_gg2(Xs, L)) -> same_sets_2_out_gg2(._22(X, Xs), L)
if_perm1_2_in_2_gg3(L, M, same_sets_2_out_gg2(L, M)) -> perm1_2_out_gg2(L, M)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
IF_SAME_SETS_2_IN_1_GG4(X, Xs, L, member_2_out_gg2(X, L)) -> SAME_SETS_2_IN_GG2(Xs, L)
SAME_SETS_2_IN_GG2(._22(X, Xs), L) -> IF_SAME_SETS_2_IN_1_GG4(X, Xs, L, member_2_in_gg2(X, L))
member_2_in_gg2(X, ._22(X, underscore2)) -> member_2_out_gg2(X, ._22(X, underscore2))
member_2_in_gg2(X, ._22(underscore3, T)) -> if_member_2_in_1_gg4(X, underscore3, T, member_2_in_gg2(X, T))
if_member_2_in_1_gg4(X, underscore3, T, member_2_out_gg2(X, T)) -> member_2_out_gg2(X, ._22(underscore3, T))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
IF_SAME_SETS_2_IN_1_GG3(Xs, L, member_2_out_gg) -> SAME_SETS_2_IN_GG2(Xs, L)
SAME_SETS_2_IN_GG2(._22(X, Xs), L) -> IF_SAME_SETS_2_IN_1_GG3(Xs, L, member_2_in_gg2(X, L))
member_2_in_gg2(X, ._22(X, underscore2)) -> member_2_out_gg
member_2_in_gg2(X, ._22(underscore3, T)) -> if_member_2_in_1_gg1(member_2_in_gg2(X, T))
if_member_2_in_1_gg1(member_2_out_gg) -> member_2_out_gg
member_2_in_gg2(x0, x1)
if_member_2_in_1_gg1(x0)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
EQ_LEN1_2_IN_GG2(._22(underscore, Xs), ._22(underscore1, Ys)) -> EQ_LEN1_2_IN_GG2(Xs, Ys)
perm1_2_in_gg2(L, M) -> if_perm1_2_in_1_gg3(L, M, eq_len1_2_in_gg2(L, M))
eq_len1_2_in_gg2([]_0, []_0) -> eq_len1_2_out_gg2([]_0, []_0)
eq_len1_2_in_gg2(._22(underscore, Xs), ._22(underscore1, Ys)) -> if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_in_gg2(Xs, Ys))
if_eq_len1_2_in_1_gg5(underscore, Xs, underscore1, Ys, eq_len1_2_out_gg2(Xs, Ys)) -> eq_len1_2_out_gg2(._22(underscore, Xs), ._22(underscore1, Ys))
if_perm1_2_in_1_gg3(L, M, eq_len1_2_out_gg2(L, M)) -> if_perm1_2_in_2_gg3(L, M, same_sets_2_in_gg2(L, M))
same_sets_2_in_gg2([]_0, underscore4) -> same_sets_2_out_gg2([]_0, underscore4)
same_sets_2_in_gg2(._22(X, Xs), L) -> if_same_sets_2_in_1_gg4(X, Xs, L, member_2_in_gg2(X, L))
member_2_in_gg2(X, ._22(X, underscore2)) -> member_2_out_gg2(X, ._22(X, underscore2))
member_2_in_gg2(X, ._22(underscore3, T)) -> if_member_2_in_1_gg4(X, underscore3, T, member_2_in_gg2(X, T))
if_member_2_in_1_gg4(X, underscore3, T, member_2_out_gg2(X, T)) -> member_2_out_gg2(X, ._22(underscore3, T))
if_same_sets_2_in_1_gg4(X, Xs, L, member_2_out_gg2(X, L)) -> if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_in_gg2(Xs, L))
if_same_sets_2_in_2_gg4(X, Xs, L, same_sets_2_out_gg2(Xs, L)) -> same_sets_2_out_gg2(._22(X, Xs), L)
if_perm1_2_in_2_gg3(L, M, same_sets_2_out_gg2(L, M)) -> perm1_2_out_gg2(L, M)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
EQ_LEN1_2_IN_GG2(._22(underscore, Xs), ._22(underscore1, Ys)) -> EQ_LEN1_2_IN_GG2(Xs, Ys)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
EQ_LEN1_2_IN_GG2(._22(underscore, Xs), ._22(underscore1, Ys)) -> EQ_LEN1_2_IN_GG2(Xs, Ys)
From the DPs we obtained the following set of size-change graphs: