↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
palindrome1: (b)
halves4: (b,f,f,f)
last3: (b,f,f) (b,f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
palindrome_1_in_g1(L) -> if_palindrome_1_in_1_g2(L, halves_4_in_gaaa4(L, X1s, X2s, EvenOdd))
halves_4_in_gaaa4([]_0, []_0, []_0, even_0) -> halves_4_out_gaaa4([]_0, []_0, []_0, even_0)
halves_4_in_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0) -> halves_4_out_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0)
halves_4_in_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_in_gaa3(._22(Y, Xs), R, Rests))
last_3_in_gaa3(._22(T, []_0), T, []_0) -> last_3_out_gaa3(._22(T, []_0), T, []_0)
last_3_in_gaa3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gaa5(H, T, X, M, last_3_in_gaa3(T, X, M))
if_last_3_in_1_gaa5(H, T, X, M, last_3_out_gaa3(T, X, M)) -> last_3_out_gaa3(._22(H, T), X, ._22(H, M))
if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_in_gaaa4(Rests, Ts, Rs, EvenOdd))
if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_out_gaaa4(Rests, Ts, Rs, EvenOdd)) -> halves_4_out_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, even_0))
eq_2_in_gg2(X, X) -> eq_2_out_gg2(X, X)
if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, even_0)) -> if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_in_gg2(X1s, X2s))
if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_out_gg2(X1s, X2s)) -> palindrome_1_out_g1(L)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, odd_0))
if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, odd_0)) -> if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_in_gag3(X1s, underscore, X2s))
last_3_in_gag3(._22(T, []_0), T, []_0) -> last_3_out_gag3(._22(T, []_0), T, []_0)
last_3_in_gag3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gag5(H, T, X, M, last_3_in_gag3(T, X, M))
if_last_3_in_1_gag5(H, T, X, M, last_3_out_gag3(T, X, M)) -> last_3_out_gag3(._22(H, T), X, ._22(H, M))
if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_out_gag3(X1s, underscore, X2s)) -> palindrome_1_out_g1(L)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
palindrome_1_in_g1(L) -> if_palindrome_1_in_1_g2(L, halves_4_in_gaaa4(L, X1s, X2s, EvenOdd))
halves_4_in_gaaa4([]_0, []_0, []_0, even_0) -> halves_4_out_gaaa4([]_0, []_0, []_0, even_0)
halves_4_in_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0) -> halves_4_out_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0)
halves_4_in_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_in_gaa3(._22(Y, Xs), R, Rests))
last_3_in_gaa3(._22(T, []_0), T, []_0) -> last_3_out_gaa3(._22(T, []_0), T, []_0)
last_3_in_gaa3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gaa5(H, T, X, M, last_3_in_gaa3(T, X, M))
if_last_3_in_1_gaa5(H, T, X, M, last_3_out_gaa3(T, X, M)) -> last_3_out_gaa3(._22(H, T), X, ._22(H, M))
if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_in_gaaa4(Rests, Ts, Rs, EvenOdd))
if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_out_gaaa4(Rests, Ts, Rs, EvenOdd)) -> halves_4_out_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, even_0))
eq_2_in_gg2(X, X) -> eq_2_out_gg2(X, X)
if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, even_0)) -> if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_in_gg2(X1s, X2s))
if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_out_gg2(X1s, X2s)) -> palindrome_1_out_g1(L)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, odd_0))
if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, odd_0)) -> if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_in_gag3(X1s, underscore, X2s))
last_3_in_gag3(._22(T, []_0), T, []_0) -> last_3_out_gag3(._22(T, []_0), T, []_0)
last_3_in_gag3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gag5(H, T, X, M, last_3_in_gag3(T, X, M))
if_last_3_in_1_gag5(H, T, X, M, last_3_out_gag3(T, X, M)) -> last_3_out_gag3(._22(H, T), X, ._22(H, M))
if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_out_gag3(X1s, underscore, X2s)) -> palindrome_1_out_g1(L)
PALINDROME_1_IN_G1(L) -> IF_PALINDROME_1_IN_1_G2(L, halves_4_in_gaaa4(L, X1s, X2s, EvenOdd))
PALINDROME_1_IN_G1(L) -> HALVES_4_IN_GAAA4(L, X1s, X2s, EvenOdd)
HALVES_4_IN_GAAA4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> IF_HALVES_4_IN_1_GAAA8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_in_gaa3(._22(Y, Xs), R, Rests))
HALVES_4_IN_GAAA4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> LAST_3_IN_GAA3(._22(Y, Xs), R, Rests)
LAST_3_IN_GAA3(._22(H, T), X, ._22(H, M)) -> IF_LAST_3_IN_1_GAA5(H, T, X, M, last_3_in_gaa3(T, X, M))
LAST_3_IN_GAA3(._22(H, T), X, ._22(H, M)) -> LAST_3_IN_GAA3(T, X, M)
IF_HALVES_4_IN_1_GAAA8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> IF_HALVES_4_IN_2_GAAA9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_in_gaaa4(Rests, Ts, Rs, EvenOdd))
IF_HALVES_4_IN_1_GAAA8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> HALVES_4_IN_GAAA4(Rests, Ts, Rs, EvenOdd)
IF_PALINDROME_1_IN_1_G2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> IF_PALINDROME_1_IN_2_G5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, even_0))
IF_PALINDROME_1_IN_1_G2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> EQ_2_IN_GG2(EvenOdd, even_0)
IF_PALINDROME_1_IN_2_G5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, even_0)) -> IF_PALINDROME_1_IN_3_G4(L, X1s, X2s, eq_2_in_gg2(X1s, X2s))
IF_PALINDROME_1_IN_2_G5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, even_0)) -> EQ_2_IN_GG2(X1s, X2s)
IF_PALINDROME_1_IN_1_G2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> IF_PALINDROME_1_IN_4_G5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, odd_0))
IF_PALINDROME_1_IN_1_G2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> EQ_2_IN_GG2(EvenOdd, odd_0)
IF_PALINDROME_1_IN_4_G5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, odd_0)) -> IF_PALINDROME_1_IN_5_G4(L, X1s, X2s, last_3_in_gag3(X1s, underscore, X2s))
IF_PALINDROME_1_IN_4_G5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, odd_0)) -> LAST_3_IN_GAG3(X1s, underscore, X2s)
LAST_3_IN_GAG3(._22(H, T), X, ._22(H, M)) -> IF_LAST_3_IN_1_GAG5(H, T, X, M, last_3_in_gag3(T, X, M))
LAST_3_IN_GAG3(._22(H, T), X, ._22(H, M)) -> LAST_3_IN_GAG3(T, X, M)
palindrome_1_in_g1(L) -> if_palindrome_1_in_1_g2(L, halves_4_in_gaaa4(L, X1s, X2s, EvenOdd))
halves_4_in_gaaa4([]_0, []_0, []_0, even_0) -> halves_4_out_gaaa4([]_0, []_0, []_0, even_0)
halves_4_in_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0) -> halves_4_out_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0)
halves_4_in_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_in_gaa3(._22(Y, Xs), R, Rests))
last_3_in_gaa3(._22(T, []_0), T, []_0) -> last_3_out_gaa3(._22(T, []_0), T, []_0)
last_3_in_gaa3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gaa5(H, T, X, M, last_3_in_gaa3(T, X, M))
if_last_3_in_1_gaa5(H, T, X, M, last_3_out_gaa3(T, X, M)) -> last_3_out_gaa3(._22(H, T), X, ._22(H, M))
if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_in_gaaa4(Rests, Ts, Rs, EvenOdd))
if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_out_gaaa4(Rests, Ts, Rs, EvenOdd)) -> halves_4_out_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, even_0))
eq_2_in_gg2(X, X) -> eq_2_out_gg2(X, X)
if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, even_0)) -> if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_in_gg2(X1s, X2s))
if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_out_gg2(X1s, X2s)) -> palindrome_1_out_g1(L)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, odd_0))
if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, odd_0)) -> if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_in_gag3(X1s, underscore, X2s))
last_3_in_gag3(._22(T, []_0), T, []_0) -> last_3_out_gag3(._22(T, []_0), T, []_0)
last_3_in_gag3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gag5(H, T, X, M, last_3_in_gag3(T, X, M))
if_last_3_in_1_gag5(H, T, X, M, last_3_out_gag3(T, X, M)) -> last_3_out_gag3(._22(H, T), X, ._22(H, M))
if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_out_gag3(X1s, underscore, X2s)) -> palindrome_1_out_g1(L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
PALINDROME_1_IN_G1(L) -> IF_PALINDROME_1_IN_1_G2(L, halves_4_in_gaaa4(L, X1s, X2s, EvenOdd))
PALINDROME_1_IN_G1(L) -> HALVES_4_IN_GAAA4(L, X1s, X2s, EvenOdd)
HALVES_4_IN_GAAA4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> IF_HALVES_4_IN_1_GAAA8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_in_gaa3(._22(Y, Xs), R, Rests))
HALVES_4_IN_GAAA4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> LAST_3_IN_GAA3(._22(Y, Xs), R, Rests)
LAST_3_IN_GAA3(._22(H, T), X, ._22(H, M)) -> IF_LAST_3_IN_1_GAA5(H, T, X, M, last_3_in_gaa3(T, X, M))
LAST_3_IN_GAA3(._22(H, T), X, ._22(H, M)) -> LAST_3_IN_GAA3(T, X, M)
IF_HALVES_4_IN_1_GAAA8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> IF_HALVES_4_IN_2_GAAA9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_in_gaaa4(Rests, Ts, Rs, EvenOdd))
IF_HALVES_4_IN_1_GAAA8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> HALVES_4_IN_GAAA4(Rests, Ts, Rs, EvenOdd)
IF_PALINDROME_1_IN_1_G2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> IF_PALINDROME_1_IN_2_G5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, even_0))
IF_PALINDROME_1_IN_1_G2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> EQ_2_IN_GG2(EvenOdd, even_0)
IF_PALINDROME_1_IN_2_G5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, even_0)) -> IF_PALINDROME_1_IN_3_G4(L, X1s, X2s, eq_2_in_gg2(X1s, X2s))
IF_PALINDROME_1_IN_2_G5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, even_0)) -> EQ_2_IN_GG2(X1s, X2s)
IF_PALINDROME_1_IN_1_G2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> IF_PALINDROME_1_IN_4_G5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, odd_0))
IF_PALINDROME_1_IN_1_G2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> EQ_2_IN_GG2(EvenOdd, odd_0)
IF_PALINDROME_1_IN_4_G5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, odd_0)) -> IF_PALINDROME_1_IN_5_G4(L, X1s, X2s, last_3_in_gag3(X1s, underscore, X2s))
IF_PALINDROME_1_IN_4_G5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, odd_0)) -> LAST_3_IN_GAG3(X1s, underscore, X2s)
LAST_3_IN_GAG3(._22(H, T), X, ._22(H, M)) -> IF_LAST_3_IN_1_GAG5(H, T, X, M, last_3_in_gag3(T, X, M))
LAST_3_IN_GAG3(._22(H, T), X, ._22(H, M)) -> LAST_3_IN_GAG3(T, X, M)
palindrome_1_in_g1(L) -> if_palindrome_1_in_1_g2(L, halves_4_in_gaaa4(L, X1s, X2s, EvenOdd))
halves_4_in_gaaa4([]_0, []_0, []_0, even_0) -> halves_4_out_gaaa4([]_0, []_0, []_0, even_0)
halves_4_in_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0) -> halves_4_out_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0)
halves_4_in_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_in_gaa3(._22(Y, Xs), R, Rests))
last_3_in_gaa3(._22(T, []_0), T, []_0) -> last_3_out_gaa3(._22(T, []_0), T, []_0)
last_3_in_gaa3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gaa5(H, T, X, M, last_3_in_gaa3(T, X, M))
if_last_3_in_1_gaa5(H, T, X, M, last_3_out_gaa3(T, X, M)) -> last_3_out_gaa3(._22(H, T), X, ._22(H, M))
if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_in_gaaa4(Rests, Ts, Rs, EvenOdd))
if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_out_gaaa4(Rests, Ts, Rs, EvenOdd)) -> halves_4_out_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, even_0))
eq_2_in_gg2(X, X) -> eq_2_out_gg2(X, X)
if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, even_0)) -> if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_in_gg2(X1s, X2s))
if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_out_gg2(X1s, X2s)) -> palindrome_1_out_g1(L)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, odd_0))
if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, odd_0)) -> if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_in_gag3(X1s, underscore, X2s))
last_3_in_gag3(._22(T, []_0), T, []_0) -> last_3_out_gag3(._22(T, []_0), T, []_0)
last_3_in_gag3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gag5(H, T, X, M, last_3_in_gag3(T, X, M))
if_last_3_in_1_gag5(H, T, X, M, last_3_out_gag3(T, X, M)) -> last_3_out_gag3(._22(H, T), X, ._22(H, M))
if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_out_gag3(X1s, underscore, X2s)) -> palindrome_1_out_g1(L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
LAST_3_IN_GAG3(._22(H, T), X, ._22(H, M)) -> LAST_3_IN_GAG3(T, X, M)
palindrome_1_in_g1(L) -> if_palindrome_1_in_1_g2(L, halves_4_in_gaaa4(L, X1s, X2s, EvenOdd))
halves_4_in_gaaa4([]_0, []_0, []_0, even_0) -> halves_4_out_gaaa4([]_0, []_0, []_0, even_0)
halves_4_in_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0) -> halves_4_out_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0)
halves_4_in_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_in_gaa3(._22(Y, Xs), R, Rests))
last_3_in_gaa3(._22(T, []_0), T, []_0) -> last_3_out_gaa3(._22(T, []_0), T, []_0)
last_3_in_gaa3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gaa5(H, T, X, M, last_3_in_gaa3(T, X, M))
if_last_3_in_1_gaa5(H, T, X, M, last_3_out_gaa3(T, X, M)) -> last_3_out_gaa3(._22(H, T), X, ._22(H, M))
if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_in_gaaa4(Rests, Ts, Rs, EvenOdd))
if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_out_gaaa4(Rests, Ts, Rs, EvenOdd)) -> halves_4_out_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, even_0))
eq_2_in_gg2(X, X) -> eq_2_out_gg2(X, X)
if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, even_0)) -> if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_in_gg2(X1s, X2s))
if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_out_gg2(X1s, X2s)) -> palindrome_1_out_g1(L)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, odd_0))
if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, odd_0)) -> if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_in_gag3(X1s, underscore, X2s))
last_3_in_gag3(._22(T, []_0), T, []_0) -> last_3_out_gag3(._22(T, []_0), T, []_0)
last_3_in_gag3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gag5(H, T, X, M, last_3_in_gag3(T, X, M))
if_last_3_in_1_gag5(H, T, X, M, last_3_out_gag3(T, X, M)) -> last_3_out_gag3(._22(H, T), X, ._22(H, M))
if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_out_gag3(X1s, underscore, X2s)) -> palindrome_1_out_g1(L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
LAST_3_IN_GAG3(._22(H, T), X, ._22(H, M)) -> LAST_3_IN_GAG3(T, X, M)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
LAST_3_IN_GAG2(._22(H, T), ._22(H, M)) -> LAST_3_IN_GAG2(T, M)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LAST_3_IN_GAA3(._22(H, T), X, ._22(H, M)) -> LAST_3_IN_GAA3(T, X, M)
palindrome_1_in_g1(L) -> if_palindrome_1_in_1_g2(L, halves_4_in_gaaa4(L, X1s, X2s, EvenOdd))
halves_4_in_gaaa4([]_0, []_0, []_0, even_0) -> halves_4_out_gaaa4([]_0, []_0, []_0, even_0)
halves_4_in_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0) -> halves_4_out_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0)
halves_4_in_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_in_gaa3(._22(Y, Xs), R, Rests))
last_3_in_gaa3(._22(T, []_0), T, []_0) -> last_3_out_gaa3(._22(T, []_0), T, []_0)
last_3_in_gaa3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gaa5(H, T, X, M, last_3_in_gaa3(T, X, M))
if_last_3_in_1_gaa5(H, T, X, M, last_3_out_gaa3(T, X, M)) -> last_3_out_gaa3(._22(H, T), X, ._22(H, M))
if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_in_gaaa4(Rests, Ts, Rs, EvenOdd))
if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_out_gaaa4(Rests, Ts, Rs, EvenOdd)) -> halves_4_out_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, even_0))
eq_2_in_gg2(X, X) -> eq_2_out_gg2(X, X)
if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, even_0)) -> if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_in_gg2(X1s, X2s))
if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_out_gg2(X1s, X2s)) -> palindrome_1_out_g1(L)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, odd_0))
if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, odd_0)) -> if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_in_gag3(X1s, underscore, X2s))
last_3_in_gag3(._22(T, []_0), T, []_0) -> last_3_out_gag3(._22(T, []_0), T, []_0)
last_3_in_gag3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gag5(H, T, X, M, last_3_in_gag3(T, X, M))
if_last_3_in_1_gag5(H, T, X, M, last_3_out_gag3(T, X, M)) -> last_3_out_gag3(._22(H, T), X, ._22(H, M))
if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_out_gag3(X1s, underscore, X2s)) -> palindrome_1_out_g1(L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LAST_3_IN_GAA3(._22(H, T), X, ._22(H, M)) -> LAST_3_IN_GAA3(T, X, M)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LAST_3_IN_GAA1(._22(H, T)) -> LAST_3_IN_GAA1(T)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
HALVES_4_IN_GAAA4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> IF_HALVES_4_IN_1_GAAA8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_in_gaa3(._22(Y, Xs), R, Rests))
IF_HALVES_4_IN_1_GAAA8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> HALVES_4_IN_GAAA4(Rests, Ts, Rs, EvenOdd)
palindrome_1_in_g1(L) -> if_palindrome_1_in_1_g2(L, halves_4_in_gaaa4(L, X1s, X2s, EvenOdd))
halves_4_in_gaaa4([]_0, []_0, []_0, even_0) -> halves_4_out_gaaa4([]_0, []_0, []_0, even_0)
halves_4_in_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0) -> halves_4_out_gaaa4(._22(X, []_0), ._22(X, []_0), []_0, odd_0)
halves_4_in_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_in_gaa3(._22(Y, Xs), R, Rests))
last_3_in_gaa3(._22(T, []_0), T, []_0) -> last_3_out_gaa3(._22(T, []_0), T, []_0)
last_3_in_gaa3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gaa5(H, T, X, M, last_3_in_gaa3(T, X, M))
if_last_3_in_1_gaa5(H, T, X, M, last_3_out_gaa3(T, X, M)) -> last_3_out_gaa3(._22(H, T), X, ._22(H, M))
if_halves_4_in_1_gaaa8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_in_gaaa4(Rests, Ts, Rs, EvenOdd))
if_halves_4_in_2_gaaa9(T, Y, Xs, Ts, R, Rs, EvenOdd, Rests, halves_4_out_gaaa4(Rests, Ts, Rs, EvenOdd)) -> halves_4_out_gaaa4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, even_0))
eq_2_in_gg2(X, X) -> eq_2_out_gg2(X, X)
if_palindrome_1_in_2_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, even_0)) -> if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_in_gg2(X1s, X2s))
if_palindrome_1_in_3_g4(L, X1s, X2s, eq_2_out_gg2(X1s, X2s)) -> palindrome_1_out_g1(L)
if_palindrome_1_in_1_g2(L, halves_4_out_gaaa4(L, X1s, X2s, EvenOdd)) -> if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_in_gg2(EvenOdd, odd_0))
if_palindrome_1_in_4_g5(L, X1s, X2s, EvenOdd, eq_2_out_gg2(EvenOdd, odd_0)) -> if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_in_gag3(X1s, underscore, X2s))
last_3_in_gag3(._22(T, []_0), T, []_0) -> last_3_out_gag3(._22(T, []_0), T, []_0)
last_3_in_gag3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gag5(H, T, X, M, last_3_in_gag3(T, X, M))
if_last_3_in_1_gag5(H, T, X, M, last_3_out_gag3(T, X, M)) -> last_3_out_gag3(._22(H, T), X, ._22(H, M))
if_palindrome_1_in_5_g4(L, X1s, X2s, last_3_out_gag3(X1s, underscore, X2s)) -> palindrome_1_out_g1(L)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
HALVES_4_IN_GAAA4(._22(T, ._22(Y, Xs)), ._22(T, Ts), ._22(R, Rs), EvenOdd) -> IF_HALVES_4_IN_1_GAAA8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_in_gaa3(._22(Y, Xs), R, Rests))
IF_HALVES_4_IN_1_GAAA8(T, Y, Xs, Ts, R, Rs, EvenOdd, last_3_out_gaa3(._22(Y, Xs), R, Rests)) -> HALVES_4_IN_GAAA4(Rests, Ts, Rs, EvenOdd)
last_3_in_gaa3(._22(T, []_0), T, []_0) -> last_3_out_gaa3(._22(T, []_0), T, []_0)
last_3_in_gaa3(._22(H, T), X, ._22(H, M)) -> if_last_3_in_1_gaa5(H, T, X, M, last_3_in_gaa3(T, X, M))
if_last_3_in_1_gaa5(H, T, X, M, last_3_out_gaa3(T, X, M)) -> last_3_out_gaa3(._22(H, T), X, ._22(H, M))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
HALVES_4_IN_GAAA1(._22(T, ._22(Y, Xs))) -> IF_HALVES_4_IN_1_GAAA2(T, last_3_in_gaa1(._22(Y, Xs)))
IF_HALVES_4_IN_1_GAAA2(T, last_3_out_gaa2(R, Rests)) -> HALVES_4_IN_GAAA1(Rests)
last_3_in_gaa1(._22(T, []_0)) -> last_3_out_gaa2(T, []_0)
last_3_in_gaa1(._22(H, T)) -> if_last_3_in_1_gaa2(H, last_3_in_gaa1(T))
if_last_3_in_1_gaa2(H, last_3_out_gaa2(X, M)) -> last_3_out_gaa2(X, ._22(H, M))
last_3_in_gaa1(x0)
if_last_3_in_1_gaa2(x0, x1)
The remaining Dependency Pairs were at least non-strictly be oriented.
HALVES_4_IN_GAAA1(._22(T, ._22(Y, Xs))) -> IF_HALVES_4_IN_1_GAAA2(T, last_3_in_gaa1(._22(Y, Xs)))
With the implicit AFS we had to orient the following set of usable rules non-strictly.
IF_HALVES_4_IN_1_GAAA2(T, last_3_out_gaa2(R, Rests)) -> HALVES_4_IN_GAAA1(Rests)
Used ordering: POLO with Polynomial interpretation:
last_3_in_gaa1(._22(H, T)) -> if_last_3_in_1_gaa2(H, last_3_in_gaa1(T))
last_3_in_gaa1(._22(T, []_0)) -> last_3_out_gaa2(T, []_0)
if_last_3_in_1_gaa2(H, last_3_out_gaa2(X, M)) -> last_3_out_gaa2(X, ._22(H, M))
POL(if_last_3_in_1_gaa2(x1, x2)) = 1 + x2
POL(._22(x1, x2)) = 1 + x2
POL(last_3_in_gaa1(x1)) = x1
POL(IF_HALVES_4_IN_1_GAAA2(x1, x2)) = x2
POL([]_0) = 0
POL(HALVES_4_IN_GAAA1(x1)) = x1
POL(last_3_out_gaa2(x1, x2)) = x2
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
IF_HALVES_4_IN_1_GAAA2(T, last_3_out_gaa2(R, Rests)) -> HALVES_4_IN_GAAA1(Rests)
last_3_in_gaa1(._22(T, []_0)) -> last_3_out_gaa2(T, []_0)
last_3_in_gaa1(._22(H, T)) -> if_last_3_in_1_gaa2(H, last_3_in_gaa1(T))
if_last_3_in_1_gaa2(H, last_3_out_gaa2(X, M)) -> last_3_out_gaa2(X, ._22(H, M))
last_3_in_gaa1(x0)
if_last_3_in_1_gaa2(x0, x1)