↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
log2: (b,f)
half2: (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))
LOG_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LOG_2_IN_1_GA3(X, Y, half_2_in_ga2(s_11(X), Z))
LOG_2_IN_GA2(s_11(X), s_11(Y)) -> HALF_2_IN_GA2(s_11(X), Z)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> IF_LOG_2_IN_2_GA4(X, Y, Z, log_2_in_ga2(Z, Y))
IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> LOG_2_IN_GA2(Z, Y)
log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
LOG_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LOG_2_IN_1_GA3(X, Y, half_2_in_ga2(s_11(X), Z))
LOG_2_IN_GA2(s_11(X), s_11(Y)) -> HALF_2_IN_GA2(s_11(X), Z)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> IF_LOG_2_IN_2_GA4(X, Y, Z, log_2_in_ga2(Z, Y))
IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> LOG_2_IN_GA2(Z, Y)
log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
HALF_2_IN_GA1(s_11(s_11(X))) -> HALF_2_IN_GA1(X)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> LOG_2_IN_GA2(Z, Y)
LOG_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LOG_2_IN_1_GA3(X, Y, half_2_in_ga2(s_11(X), Z))
log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> LOG_2_IN_GA2(Z, Y)
LOG_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LOG_2_IN_1_GA3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
IF_LOG_2_IN_1_GA1(half_2_out_ga1(Z)) -> LOG_2_IN_GA1(Z)
LOG_2_IN_GA1(s_11(X)) -> IF_LOG_2_IN_1_GA1(half_2_in_ga1(s_11(X)))
half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)
half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
POL(0_0) = 1
POL(if_half_2_in_1_ga1(x1)) = 2·x1
POL(LOG_2_IN_GA1(x1)) = 1 + x1
POL(half_2_in_ga1(x1)) = 1 + x1
POL(half_2_out_ga1(x1)) = 1 + x1
POL(IF_LOG_2_IN_1_GA1(x1)) = x1
POL(s_11(x1)) = 1 + 2·x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
IF_LOG_2_IN_1_GA1(half_2_out_ga1(Z)) -> LOG_2_IN_GA1(Z)
LOG_2_IN_GA1(s_11(X)) -> IF_LOG_2_IN_1_GA1(half_2_in_ga1(s_11(X)))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)
half_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)