Left Termination of the query pattern log(b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

half2(00, 00).
half2(s1(00), 00).
half2(s12 (X), s1(Y)) :- half2(X, Y).
log2(00, s1(00)).
log2(s1(X), s1(Y)) :- half2(s1(X), Z), log2(Z, Y).


With regard to the inferred argument filtering the predicates were used in the following modes:
log2: (b,f)
half2: (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
log_2_in_ga2(x1, x2)  =  log_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
log_2_out_ga2(x1, x2)  =  log_2_out_ga1(x2)
if_log_2_in_1_ga3(x1, x2, x3)  =  if_log_2_in_1_ga1(x3)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log_2_in_2_ga4(x1, x2, x3, x4)  =  if_log_2_in_2_ga1(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
log_2_in_ga2(x1, x2)  =  log_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
log_2_out_ga2(x1, x2)  =  log_2_out_ga1(x2)
if_log_2_in_1_ga3(x1, x2, x3)  =  if_log_2_in_1_ga1(x3)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log_2_in_2_ga4(x1, x2, x3, x4)  =  if_log_2_in_2_ga1(x4)


Pi DP problem:
The TRS P consists of the following rules:

LOG_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LOG_2_IN_1_GA3(X, Y, half_2_in_ga2(s_11(X), Z))
LOG_2_IN_GA2(s_11(X), s_11(Y)) -> HALF_2_IN_GA2(s_11(X), Z)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> IF_LOG_2_IN_2_GA4(X, Y, Z, log_2_in_ga2(Z, Y))
IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> LOG_2_IN_GA2(Z, Y)

The TRS R consists of the following rules:

log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
log_2_in_ga2(x1, x2)  =  log_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
log_2_out_ga2(x1, x2)  =  log_2_out_ga1(x2)
if_log_2_in_1_ga3(x1, x2, x3)  =  if_log_2_in_1_ga1(x3)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log_2_in_2_ga4(x1, x2, x3, x4)  =  if_log_2_in_2_ga1(x4)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)
IF_LOG_2_IN_1_GA3(x1, x2, x3)  =  IF_LOG_2_IN_1_GA1(x3)
LOG_2_IN_GA2(x1, x2)  =  LOG_2_IN_GA1(x1)
IF_LOG_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_LOG_2_IN_2_GA1(x4)
IF_HALF_2_IN_1_GA3(x1, x2, x3)  =  IF_HALF_2_IN_1_GA1(x3)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

LOG_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LOG_2_IN_1_GA3(X, Y, half_2_in_ga2(s_11(X), Z))
LOG_2_IN_GA2(s_11(X), s_11(Y)) -> HALF_2_IN_GA2(s_11(X), Z)
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> IF_HALF_2_IN_1_GA3(X, Y, half_2_in_ga2(X, Y))
HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)
IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> IF_LOG_2_IN_2_GA4(X, Y, Z, log_2_in_ga2(Z, Y))
IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> LOG_2_IN_GA2(Z, Y)

The TRS R consists of the following rules:

log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
log_2_in_ga2(x1, x2)  =  log_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
log_2_out_ga2(x1, x2)  =  log_2_out_ga1(x2)
if_log_2_in_1_ga3(x1, x2, x3)  =  if_log_2_in_1_ga1(x3)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log_2_in_2_ga4(x1, x2, x3, x4)  =  if_log_2_in_2_ga1(x4)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)
IF_LOG_2_IN_1_GA3(x1, x2, x3)  =  IF_LOG_2_IN_1_GA1(x3)
LOG_2_IN_GA2(x1, x2)  =  LOG_2_IN_GA1(x1)
IF_LOG_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_LOG_2_IN_2_GA1(x4)
IF_HALF_2_IN_1_GA3(x1, x2, x3)  =  IF_HALF_2_IN_1_GA1(x3)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)

The TRS R consists of the following rules:

log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
log_2_in_ga2(x1, x2)  =  log_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
log_2_out_ga2(x1, x2)  =  log_2_out_ga1(x2)
if_log_2_in_1_ga3(x1, x2, x3)  =  if_log_2_in_1_ga1(x3)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log_2_in_2_ga4(x1, x2, x3, x4)  =  if_log_2_in_2_ga1(x4)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA2(s_11(s_11(X)), s_11(Y)) -> HALF_2_IN_GA2(X, Y)

R is empty.
The argument filtering Pi contains the following mapping:
s_11(x1)  =  s_11(x1)
HALF_2_IN_GA2(x1, x2)  =  HALF_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

HALF_2_IN_GA1(s_11(s_11(X))) -> HALF_2_IN_GA1(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {HALF_2_IN_GA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> LOG_2_IN_GA2(Z, Y)
LOG_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LOG_2_IN_1_GA3(X, Y, half_2_in_ga2(s_11(X), Z))

The TRS R consists of the following rules:

log_2_in_ga2(0_0, s_11(0_0)) -> log_2_out_ga2(0_0, s_11(0_0))
log_2_in_ga2(s_11(X), s_11(Y)) -> if_log_2_in_1_ga3(X, Y, half_2_in_ga2(s_11(X), Z))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)
half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
if_log_2_in_1_ga3(X, Y, half_2_out_ga2(s_11(X), Z)) -> if_log_2_in_2_ga4(X, Y, Z, log_2_in_ga2(Z, Y))
if_log_2_in_2_ga4(X, Y, Z, log_2_out_ga2(Z, Y)) -> log_2_out_ga2(s_11(X), s_11(Y))

The argument filtering Pi contains the following mapping:
log_2_in_ga2(x1, x2)  =  log_2_in_ga1(x1)
0_0  =  0_0
s_11(x1)  =  s_11(x1)
log_2_out_ga2(x1, x2)  =  log_2_out_ga1(x2)
if_log_2_in_1_ga3(x1, x2, x3)  =  if_log_2_in_1_ga1(x3)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
if_log_2_in_2_ga4(x1, x2, x3, x4)  =  if_log_2_in_2_ga1(x4)
IF_LOG_2_IN_1_GA3(x1, x2, x3)  =  IF_LOG_2_IN_1_GA1(x3)
LOG_2_IN_GA2(x1, x2)  =  LOG_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IF_LOG_2_IN_1_GA3(X, Y, half_2_out_ga2(s_11(X), Z)) -> LOG_2_IN_GA2(Z, Y)
LOG_2_IN_GA2(s_11(X), s_11(Y)) -> IF_LOG_2_IN_1_GA3(X, Y, half_2_in_ga2(s_11(X), Z))

The TRS R consists of the following rules:

half_2_in_ga2(s_11(0_0), 0_0) -> half_2_out_ga2(s_11(0_0), 0_0)
half_2_in_ga2(s_11(s_11(X)), s_11(Y)) -> if_half_2_in_1_ga3(X, Y, half_2_in_ga2(X, Y))
if_half_2_in_1_ga3(X, Y, half_2_out_ga2(X, Y)) -> half_2_out_ga2(s_11(s_11(X)), s_11(Y))
half_2_in_ga2(0_0, 0_0) -> half_2_out_ga2(0_0, 0_0)

The argument filtering Pi contains the following mapping:
0_0  =  0_0
s_11(x1)  =  s_11(x1)
half_2_in_ga2(x1, x2)  =  half_2_in_ga1(x1)
half_2_out_ga2(x1, x2)  =  half_2_out_ga1(x2)
if_half_2_in_1_ga3(x1, x2, x3)  =  if_half_2_in_1_ga1(x3)
IF_LOG_2_IN_1_GA3(x1, x2, x3)  =  IF_LOG_2_IN_1_GA1(x3)
LOG_2_IN_GA2(x1, x2)  =  LOG_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

IF_LOG_2_IN_1_GA1(half_2_out_ga1(Z)) -> LOG_2_IN_GA1(Z)
LOG_2_IN_GA1(s_11(X)) -> IF_LOG_2_IN_1_GA1(half_2_in_ga1(s_11(X)))

The TRS R consists of the following rules:

half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))
if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)

The set Q consists of the following terms:

half_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LOG_2_IN_GA1, IF_LOG_2_IN_1_GA1}.
By using a polynomial ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

half_2_in_ga1(s_11(0_0)) -> half_2_out_ga1(0_0)
half_2_in_ga1(s_11(s_11(X))) -> if_half_2_in_1_ga1(half_2_in_ga1(X))

Used ordering: POLO with Polynomial interpretation:

POL(0_0) = 1   
POL(if_half_2_in_1_ga1(x1)) = 2·x1   
POL(LOG_2_IN_GA1(x1)) = 1 + x1   
POL(half_2_in_ga1(x1)) = 1 + x1   
POL(half_2_out_ga1(x1)) = 1 + x1   
POL(IF_LOG_2_IN_1_GA1(x1)) = x1   
POL(s_11(x1)) = 1 + 2·x1   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF_LOG_2_IN_1_GA1(half_2_out_ga1(Z)) -> LOG_2_IN_GA1(Z)
LOG_2_IN_GA1(s_11(X)) -> IF_LOG_2_IN_1_GA1(half_2_in_ga1(s_11(X)))

The TRS R consists of the following rules:

if_half_2_in_1_ga1(half_2_out_ga1(Y)) -> half_2_out_ga1(s_11(Y))
half_2_in_ga1(0_0) -> half_2_out_ga1(0_0)

The set Q consists of the following terms:

half_2_in_ga1(x0)
if_half_2_in_1_ga1(x0)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {LOG_2_IN_GA1, IF_LOG_2_IN_1_GA1}.
The approximation of the Dependency Graph contains 0 SCCs with 2 less nodes.