Left Termination of the query pattern int(b,b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

intlist2({}0, {}0).
intlist2(.2(X, XS), .2(s1(X), YS)) :- intlist2(XS, YS).
int3(00, 00, .2(00, {}0)).
int3(00, s1(Y), .2(00, XS)) :- int3(s1(00), s1(Y), XS).
int3(s1(X), 00, {}0).
int3(s1(X), s1(Y), XS) :- int3(X, Y, ZS), intlist2(ZS, XS).


With regard to the inferred argument filtering the predicates were used in the following modes:
int3: (b,b,f)
intlist2: (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


int_3_in_gga3(0_0, 0_0, ._22(0_0, []_0)) -> int_3_out_gga3(0_0, 0_0, ._22(0_0, []_0))
int_3_in_gga3(0_0, s_11(Y), ._22(0_0, XS)) -> if_int_3_in_1_gga3(Y, XS, int_3_in_gga3(s_11(0_0), s_11(Y), XS))
int_3_in_gga3(s_11(X), 0_0, []_0) -> int_3_out_gga3(s_11(X), 0_0, []_0)
int_3_in_gga3(s_11(X), s_11(Y), XS) -> if_int_3_in_2_gga4(X, Y, XS, int_3_in_gga3(X, Y, ZS))
if_int_3_in_2_gga4(X, Y, XS, int_3_out_gga3(X, Y, ZS)) -> if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_in_ga2(ZS, XS))
intlist_2_in_ga2([]_0, []_0) -> intlist_2_out_ga2([]_0, []_0)
intlist_2_in_ga2(._22(X, XS), ._22(s_11(X), YS)) -> if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_in_ga2(XS, YS))
if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_out_ga2(XS, YS)) -> intlist_2_out_ga2(._22(X, XS), ._22(s_11(X), YS))
if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_out_ga2(ZS, XS)) -> int_3_out_gga3(s_11(X), s_11(Y), XS)
if_int_3_in_1_gga3(Y, XS, int_3_out_gga3(s_11(0_0), s_11(Y), XS)) -> int_3_out_gga3(0_0, s_11(Y), ._22(0_0, XS))

The argument filtering Pi contains the following mapping:
int_3_in_gga3(x1, x2, x3)  =  int_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
int_3_out_gga3(x1, x2, x3)  =  int_3_out_gga1(x3)
if_int_3_in_1_gga3(x1, x2, x3)  =  if_int_3_in_1_gga1(x3)
if_int_3_in_2_gga4(x1, x2, x3, x4)  =  if_int_3_in_2_gga1(x4)
if_int_3_in_3_gga5(x1, x2, x3, x4, x5)  =  if_int_3_in_3_gga1(x5)
intlist_2_in_ga2(x1, x2)  =  intlist_2_in_ga1(x1)
intlist_2_out_ga2(x1, x2)  =  intlist_2_out_ga1(x2)
if_intlist_2_in_1_ga4(x1, x2, x3, x4)  =  if_intlist_2_in_1_ga2(x1, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

int_3_in_gga3(0_0, 0_0, ._22(0_0, []_0)) -> int_3_out_gga3(0_0, 0_0, ._22(0_0, []_0))
int_3_in_gga3(0_0, s_11(Y), ._22(0_0, XS)) -> if_int_3_in_1_gga3(Y, XS, int_3_in_gga3(s_11(0_0), s_11(Y), XS))
int_3_in_gga3(s_11(X), 0_0, []_0) -> int_3_out_gga3(s_11(X), 0_0, []_0)
int_3_in_gga3(s_11(X), s_11(Y), XS) -> if_int_3_in_2_gga4(X, Y, XS, int_3_in_gga3(X, Y, ZS))
if_int_3_in_2_gga4(X, Y, XS, int_3_out_gga3(X, Y, ZS)) -> if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_in_ga2(ZS, XS))
intlist_2_in_ga2([]_0, []_0) -> intlist_2_out_ga2([]_0, []_0)
intlist_2_in_ga2(._22(X, XS), ._22(s_11(X), YS)) -> if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_in_ga2(XS, YS))
if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_out_ga2(XS, YS)) -> intlist_2_out_ga2(._22(X, XS), ._22(s_11(X), YS))
if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_out_ga2(ZS, XS)) -> int_3_out_gga3(s_11(X), s_11(Y), XS)
if_int_3_in_1_gga3(Y, XS, int_3_out_gga3(s_11(0_0), s_11(Y), XS)) -> int_3_out_gga3(0_0, s_11(Y), ._22(0_0, XS))

The argument filtering Pi contains the following mapping:
int_3_in_gga3(x1, x2, x3)  =  int_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
int_3_out_gga3(x1, x2, x3)  =  int_3_out_gga1(x3)
if_int_3_in_1_gga3(x1, x2, x3)  =  if_int_3_in_1_gga1(x3)
if_int_3_in_2_gga4(x1, x2, x3, x4)  =  if_int_3_in_2_gga1(x4)
if_int_3_in_3_gga5(x1, x2, x3, x4, x5)  =  if_int_3_in_3_gga1(x5)
intlist_2_in_ga2(x1, x2)  =  intlist_2_in_ga1(x1)
intlist_2_out_ga2(x1, x2)  =  intlist_2_out_ga1(x2)
if_intlist_2_in_1_ga4(x1, x2, x3, x4)  =  if_intlist_2_in_1_ga2(x1, x4)


Pi DP problem:
The TRS P consists of the following rules:

INT_3_IN_GGA3(0_0, s_11(Y), ._22(0_0, XS)) -> IF_INT_3_IN_1_GGA3(Y, XS, int_3_in_gga3(s_11(0_0), s_11(Y), XS))
INT_3_IN_GGA3(0_0, s_11(Y), ._22(0_0, XS)) -> INT_3_IN_GGA3(s_11(0_0), s_11(Y), XS)
INT_3_IN_GGA3(s_11(X), s_11(Y), XS) -> IF_INT_3_IN_2_GGA4(X, Y, XS, int_3_in_gga3(X, Y, ZS))
INT_3_IN_GGA3(s_11(X), s_11(Y), XS) -> INT_3_IN_GGA3(X, Y, ZS)
IF_INT_3_IN_2_GGA4(X, Y, XS, int_3_out_gga3(X, Y, ZS)) -> IF_INT_3_IN_3_GGA5(X, Y, XS, ZS, intlist_2_in_ga2(ZS, XS))
IF_INT_3_IN_2_GGA4(X, Y, XS, int_3_out_gga3(X, Y, ZS)) -> INTLIST_2_IN_GA2(ZS, XS)
INTLIST_2_IN_GA2(._22(X, XS), ._22(s_11(X), YS)) -> IF_INTLIST_2_IN_1_GA4(X, XS, YS, intlist_2_in_ga2(XS, YS))
INTLIST_2_IN_GA2(._22(X, XS), ._22(s_11(X), YS)) -> INTLIST_2_IN_GA2(XS, YS)

The TRS R consists of the following rules:

int_3_in_gga3(0_0, 0_0, ._22(0_0, []_0)) -> int_3_out_gga3(0_0, 0_0, ._22(0_0, []_0))
int_3_in_gga3(0_0, s_11(Y), ._22(0_0, XS)) -> if_int_3_in_1_gga3(Y, XS, int_3_in_gga3(s_11(0_0), s_11(Y), XS))
int_3_in_gga3(s_11(X), 0_0, []_0) -> int_3_out_gga3(s_11(X), 0_0, []_0)
int_3_in_gga3(s_11(X), s_11(Y), XS) -> if_int_3_in_2_gga4(X, Y, XS, int_3_in_gga3(X, Y, ZS))
if_int_3_in_2_gga4(X, Y, XS, int_3_out_gga3(X, Y, ZS)) -> if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_in_ga2(ZS, XS))
intlist_2_in_ga2([]_0, []_0) -> intlist_2_out_ga2([]_0, []_0)
intlist_2_in_ga2(._22(X, XS), ._22(s_11(X), YS)) -> if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_in_ga2(XS, YS))
if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_out_ga2(XS, YS)) -> intlist_2_out_ga2(._22(X, XS), ._22(s_11(X), YS))
if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_out_ga2(ZS, XS)) -> int_3_out_gga3(s_11(X), s_11(Y), XS)
if_int_3_in_1_gga3(Y, XS, int_3_out_gga3(s_11(0_0), s_11(Y), XS)) -> int_3_out_gga3(0_0, s_11(Y), ._22(0_0, XS))

The argument filtering Pi contains the following mapping:
int_3_in_gga3(x1, x2, x3)  =  int_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
int_3_out_gga3(x1, x2, x3)  =  int_3_out_gga1(x3)
if_int_3_in_1_gga3(x1, x2, x3)  =  if_int_3_in_1_gga1(x3)
if_int_3_in_2_gga4(x1, x2, x3, x4)  =  if_int_3_in_2_gga1(x4)
if_int_3_in_3_gga5(x1, x2, x3, x4, x5)  =  if_int_3_in_3_gga1(x5)
intlist_2_in_ga2(x1, x2)  =  intlist_2_in_ga1(x1)
intlist_2_out_ga2(x1, x2)  =  intlist_2_out_ga1(x2)
if_intlist_2_in_1_ga4(x1, x2, x3, x4)  =  if_intlist_2_in_1_ga2(x1, x4)
INT_3_IN_GGA3(x1, x2, x3)  =  INT_3_IN_GGA2(x1, x2)
IF_INT_3_IN_3_GGA5(x1, x2, x3, x4, x5)  =  IF_INT_3_IN_3_GGA1(x5)
INTLIST_2_IN_GA2(x1, x2)  =  INTLIST_2_IN_GA1(x1)
IF_INT_3_IN_2_GGA4(x1, x2, x3, x4)  =  IF_INT_3_IN_2_GGA1(x4)
IF_INT_3_IN_1_GGA3(x1, x2, x3)  =  IF_INT_3_IN_1_GGA1(x3)
IF_INTLIST_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_INTLIST_2_IN_1_GA2(x1, x4)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

INT_3_IN_GGA3(0_0, s_11(Y), ._22(0_0, XS)) -> IF_INT_3_IN_1_GGA3(Y, XS, int_3_in_gga3(s_11(0_0), s_11(Y), XS))
INT_3_IN_GGA3(0_0, s_11(Y), ._22(0_0, XS)) -> INT_3_IN_GGA3(s_11(0_0), s_11(Y), XS)
INT_3_IN_GGA3(s_11(X), s_11(Y), XS) -> IF_INT_3_IN_2_GGA4(X, Y, XS, int_3_in_gga3(X, Y, ZS))
INT_3_IN_GGA3(s_11(X), s_11(Y), XS) -> INT_3_IN_GGA3(X, Y, ZS)
IF_INT_3_IN_2_GGA4(X, Y, XS, int_3_out_gga3(X, Y, ZS)) -> IF_INT_3_IN_3_GGA5(X, Y, XS, ZS, intlist_2_in_ga2(ZS, XS))
IF_INT_3_IN_2_GGA4(X, Y, XS, int_3_out_gga3(X, Y, ZS)) -> INTLIST_2_IN_GA2(ZS, XS)
INTLIST_2_IN_GA2(._22(X, XS), ._22(s_11(X), YS)) -> IF_INTLIST_2_IN_1_GA4(X, XS, YS, intlist_2_in_ga2(XS, YS))
INTLIST_2_IN_GA2(._22(X, XS), ._22(s_11(X), YS)) -> INTLIST_2_IN_GA2(XS, YS)

The TRS R consists of the following rules:

int_3_in_gga3(0_0, 0_0, ._22(0_0, []_0)) -> int_3_out_gga3(0_0, 0_0, ._22(0_0, []_0))
int_3_in_gga3(0_0, s_11(Y), ._22(0_0, XS)) -> if_int_3_in_1_gga3(Y, XS, int_3_in_gga3(s_11(0_0), s_11(Y), XS))
int_3_in_gga3(s_11(X), 0_0, []_0) -> int_3_out_gga3(s_11(X), 0_0, []_0)
int_3_in_gga3(s_11(X), s_11(Y), XS) -> if_int_3_in_2_gga4(X, Y, XS, int_3_in_gga3(X, Y, ZS))
if_int_3_in_2_gga4(X, Y, XS, int_3_out_gga3(X, Y, ZS)) -> if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_in_ga2(ZS, XS))
intlist_2_in_ga2([]_0, []_0) -> intlist_2_out_ga2([]_0, []_0)
intlist_2_in_ga2(._22(X, XS), ._22(s_11(X), YS)) -> if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_in_ga2(XS, YS))
if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_out_ga2(XS, YS)) -> intlist_2_out_ga2(._22(X, XS), ._22(s_11(X), YS))
if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_out_ga2(ZS, XS)) -> int_3_out_gga3(s_11(X), s_11(Y), XS)
if_int_3_in_1_gga3(Y, XS, int_3_out_gga3(s_11(0_0), s_11(Y), XS)) -> int_3_out_gga3(0_0, s_11(Y), ._22(0_0, XS))

The argument filtering Pi contains the following mapping:
int_3_in_gga3(x1, x2, x3)  =  int_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
int_3_out_gga3(x1, x2, x3)  =  int_3_out_gga1(x3)
if_int_3_in_1_gga3(x1, x2, x3)  =  if_int_3_in_1_gga1(x3)
if_int_3_in_2_gga4(x1, x2, x3, x4)  =  if_int_3_in_2_gga1(x4)
if_int_3_in_3_gga5(x1, x2, x3, x4, x5)  =  if_int_3_in_3_gga1(x5)
intlist_2_in_ga2(x1, x2)  =  intlist_2_in_ga1(x1)
intlist_2_out_ga2(x1, x2)  =  intlist_2_out_ga1(x2)
if_intlist_2_in_1_ga4(x1, x2, x3, x4)  =  if_intlist_2_in_1_ga2(x1, x4)
INT_3_IN_GGA3(x1, x2, x3)  =  INT_3_IN_GGA2(x1, x2)
IF_INT_3_IN_3_GGA5(x1, x2, x3, x4, x5)  =  IF_INT_3_IN_3_GGA1(x5)
INTLIST_2_IN_GA2(x1, x2)  =  INTLIST_2_IN_GA1(x1)
IF_INT_3_IN_2_GGA4(x1, x2, x3, x4)  =  IF_INT_3_IN_2_GGA1(x4)
IF_INT_3_IN_1_GGA3(x1, x2, x3)  =  IF_INT_3_IN_1_GGA1(x3)
IF_INTLIST_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_INTLIST_2_IN_1_GA2(x1, x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 5 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

INTLIST_2_IN_GA2(._22(X, XS), ._22(s_11(X), YS)) -> INTLIST_2_IN_GA2(XS, YS)

The TRS R consists of the following rules:

int_3_in_gga3(0_0, 0_0, ._22(0_0, []_0)) -> int_3_out_gga3(0_0, 0_0, ._22(0_0, []_0))
int_3_in_gga3(0_0, s_11(Y), ._22(0_0, XS)) -> if_int_3_in_1_gga3(Y, XS, int_3_in_gga3(s_11(0_0), s_11(Y), XS))
int_3_in_gga3(s_11(X), 0_0, []_0) -> int_3_out_gga3(s_11(X), 0_0, []_0)
int_3_in_gga3(s_11(X), s_11(Y), XS) -> if_int_3_in_2_gga4(X, Y, XS, int_3_in_gga3(X, Y, ZS))
if_int_3_in_2_gga4(X, Y, XS, int_3_out_gga3(X, Y, ZS)) -> if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_in_ga2(ZS, XS))
intlist_2_in_ga2([]_0, []_0) -> intlist_2_out_ga2([]_0, []_0)
intlist_2_in_ga2(._22(X, XS), ._22(s_11(X), YS)) -> if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_in_ga2(XS, YS))
if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_out_ga2(XS, YS)) -> intlist_2_out_ga2(._22(X, XS), ._22(s_11(X), YS))
if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_out_ga2(ZS, XS)) -> int_3_out_gga3(s_11(X), s_11(Y), XS)
if_int_3_in_1_gga3(Y, XS, int_3_out_gga3(s_11(0_0), s_11(Y), XS)) -> int_3_out_gga3(0_0, s_11(Y), ._22(0_0, XS))

The argument filtering Pi contains the following mapping:
int_3_in_gga3(x1, x2, x3)  =  int_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
int_3_out_gga3(x1, x2, x3)  =  int_3_out_gga1(x3)
if_int_3_in_1_gga3(x1, x2, x3)  =  if_int_3_in_1_gga1(x3)
if_int_3_in_2_gga4(x1, x2, x3, x4)  =  if_int_3_in_2_gga1(x4)
if_int_3_in_3_gga5(x1, x2, x3, x4, x5)  =  if_int_3_in_3_gga1(x5)
intlist_2_in_ga2(x1, x2)  =  intlist_2_in_ga1(x1)
intlist_2_out_ga2(x1, x2)  =  intlist_2_out_ga1(x2)
if_intlist_2_in_1_ga4(x1, x2, x3, x4)  =  if_intlist_2_in_1_ga2(x1, x4)
INTLIST_2_IN_GA2(x1, x2)  =  INTLIST_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

INTLIST_2_IN_GA2(._22(X, XS), ._22(s_11(X), YS)) -> INTLIST_2_IN_GA2(XS, YS)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
INTLIST_2_IN_GA2(x1, x2)  =  INTLIST_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

INTLIST_2_IN_GA1(._22(X, XS)) -> INTLIST_2_IN_GA1(XS)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {INTLIST_2_IN_GA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

INT_3_IN_GGA3(s_11(X), s_11(Y), XS) -> INT_3_IN_GGA3(X, Y, ZS)
INT_3_IN_GGA3(0_0, s_11(Y), ._22(0_0, XS)) -> INT_3_IN_GGA3(s_11(0_0), s_11(Y), XS)

The TRS R consists of the following rules:

int_3_in_gga3(0_0, 0_0, ._22(0_0, []_0)) -> int_3_out_gga3(0_0, 0_0, ._22(0_0, []_0))
int_3_in_gga3(0_0, s_11(Y), ._22(0_0, XS)) -> if_int_3_in_1_gga3(Y, XS, int_3_in_gga3(s_11(0_0), s_11(Y), XS))
int_3_in_gga3(s_11(X), 0_0, []_0) -> int_3_out_gga3(s_11(X), 0_0, []_0)
int_3_in_gga3(s_11(X), s_11(Y), XS) -> if_int_3_in_2_gga4(X, Y, XS, int_3_in_gga3(X, Y, ZS))
if_int_3_in_2_gga4(X, Y, XS, int_3_out_gga3(X, Y, ZS)) -> if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_in_ga2(ZS, XS))
intlist_2_in_ga2([]_0, []_0) -> intlist_2_out_ga2([]_0, []_0)
intlist_2_in_ga2(._22(X, XS), ._22(s_11(X), YS)) -> if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_in_ga2(XS, YS))
if_intlist_2_in_1_ga4(X, XS, YS, intlist_2_out_ga2(XS, YS)) -> intlist_2_out_ga2(._22(X, XS), ._22(s_11(X), YS))
if_int_3_in_3_gga5(X, Y, XS, ZS, intlist_2_out_ga2(ZS, XS)) -> int_3_out_gga3(s_11(X), s_11(Y), XS)
if_int_3_in_1_gga3(Y, XS, int_3_out_gga3(s_11(0_0), s_11(Y), XS)) -> int_3_out_gga3(0_0, s_11(Y), ._22(0_0, XS))

The argument filtering Pi contains the following mapping:
int_3_in_gga3(x1, x2, x3)  =  int_3_in_gga2(x1, x2)
[]_0  =  []_0
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
int_3_out_gga3(x1, x2, x3)  =  int_3_out_gga1(x3)
if_int_3_in_1_gga3(x1, x2, x3)  =  if_int_3_in_1_gga1(x3)
if_int_3_in_2_gga4(x1, x2, x3, x4)  =  if_int_3_in_2_gga1(x4)
if_int_3_in_3_gga5(x1, x2, x3, x4, x5)  =  if_int_3_in_3_gga1(x5)
intlist_2_in_ga2(x1, x2)  =  intlist_2_in_ga1(x1)
intlist_2_out_ga2(x1, x2)  =  intlist_2_out_ga1(x2)
if_intlist_2_in_1_ga4(x1, x2, x3, x4)  =  if_intlist_2_in_1_ga2(x1, x4)
INT_3_IN_GGA3(x1, x2, x3)  =  INT_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

INT_3_IN_GGA3(s_11(X), s_11(Y), XS) -> INT_3_IN_GGA3(X, Y, ZS)
INT_3_IN_GGA3(0_0, s_11(Y), ._22(0_0, XS)) -> INT_3_IN_GGA3(s_11(0_0), s_11(Y), XS)

R is empty.
The argument filtering Pi contains the following mapping:
._22(x1, x2)  =  ._22(x1, x2)
s_11(x1)  =  s_11(x1)
0_0  =  0_0
INT_3_IN_GGA3(x1, x2, x3)  =  INT_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

INT_3_IN_GGA2(s_11(X), s_11(Y)) -> INT_3_IN_GGA2(X, Y)
INT_3_IN_GGA2(0_0, s_11(Y)) -> INT_3_IN_GGA2(s_11(0_0), s_11(Y))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {INT_3_IN_GGA2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: