↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
minus3: (b,f,f)
le3: (b,f,f)
if4: (b,b,f,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minus_3_in_gaa3(X, Y, Z) -> if_minus_3_in_1_gaa4(X, Y, Z, le_3_in_gaa3(X, Y, B))
le_3_in_gaa3(0_0, Y, true_0) -> le_3_out_gaa3(0_0, Y, true_0)
le_3_in_gaa3(s_11(X), 0_0, false_0) -> le_3_out_gaa3(s_11(X), 0_0, false_0)
le_3_in_gaa3(s_11(X), s_11(Y), B) -> if_le_3_in_1_gaa4(X, Y, B, le_3_in_gaa3(X, Y, B))
if_le_3_in_1_gaa4(X, Y, B, le_3_out_gaa3(X, Y, B)) -> le_3_out_gaa3(s_11(X), s_11(Y), B)
if_minus_3_in_1_gaa4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_in_ggaa4(B, X, Y, Z))
if_4_in_ggaa4(true_0, X, Y, 0_0) -> if_4_out_ggaa4(true_0, X, Y, 0_0)
if_4_in_ggaa4(false_0, X, Y, s_11(Z)) -> if_if_4_in_1_ggaa4(X, Y, Z, p_2_in_ga2(X, X1))
p_2_in_ga2(0_0, 0_0) -> p_2_out_ga2(0_0, 0_0)
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_if_4_in_1_ggaa4(X, Y, Z, p_2_out_ga2(X, X1)) -> if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_in_gaa3(X1, Y, Z))
if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_out_gaa3(X1, Y, Z)) -> if_4_out_ggaa4(false_0, X, Y, s_11(Z))
if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_out_ggaa4(B, X, Y, Z)) -> minus_3_out_gaa3(X, Y, Z)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
minus_3_in_gaa3(X, Y, Z) -> if_minus_3_in_1_gaa4(X, Y, Z, le_3_in_gaa3(X, Y, B))
le_3_in_gaa3(0_0, Y, true_0) -> le_3_out_gaa3(0_0, Y, true_0)
le_3_in_gaa3(s_11(X), 0_0, false_0) -> le_3_out_gaa3(s_11(X), 0_0, false_0)
le_3_in_gaa3(s_11(X), s_11(Y), B) -> if_le_3_in_1_gaa4(X, Y, B, le_3_in_gaa3(X, Y, B))
if_le_3_in_1_gaa4(X, Y, B, le_3_out_gaa3(X, Y, B)) -> le_3_out_gaa3(s_11(X), s_11(Y), B)
if_minus_3_in_1_gaa4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_in_ggaa4(B, X, Y, Z))
if_4_in_ggaa4(true_0, X, Y, 0_0) -> if_4_out_ggaa4(true_0, X, Y, 0_0)
if_4_in_ggaa4(false_0, X, Y, s_11(Z)) -> if_if_4_in_1_ggaa4(X, Y, Z, p_2_in_ga2(X, X1))
p_2_in_ga2(0_0, 0_0) -> p_2_out_ga2(0_0, 0_0)
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_if_4_in_1_ggaa4(X, Y, Z, p_2_out_ga2(X, X1)) -> if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_in_gaa3(X1, Y, Z))
if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_out_gaa3(X1, Y, Z)) -> if_4_out_ggaa4(false_0, X, Y, s_11(Z))
if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_out_ggaa4(B, X, Y, Z)) -> minus_3_out_gaa3(X, Y, Z)
MINUS_3_IN_GAA3(X, Y, Z) -> IF_MINUS_3_IN_1_GAA4(X, Y, Z, le_3_in_gaa3(X, Y, B))
MINUS_3_IN_GAA3(X, Y, Z) -> LE_3_IN_GAA3(X, Y, B)
LE_3_IN_GAA3(s_11(X), s_11(Y), B) -> IF_LE_3_IN_1_GAA4(X, Y, B, le_3_in_gaa3(X, Y, B))
LE_3_IN_GAA3(s_11(X), s_11(Y), B) -> LE_3_IN_GAA3(X, Y, B)
IF_MINUS_3_IN_1_GAA4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> IF_MINUS_3_IN_2_GAA5(X, Y, Z, B, if_4_in_ggaa4(B, X, Y, Z))
IF_MINUS_3_IN_1_GAA4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> IF_4_IN_GGAA4(B, X, Y, Z)
IF_4_IN_GGAA4(false_0, X, Y, s_11(Z)) -> IF_IF_4_IN_1_GGAA4(X, Y, Z, p_2_in_ga2(X, X1))
IF_4_IN_GGAA4(false_0, X, Y, s_11(Z)) -> P_2_IN_GA2(X, X1)
IF_IF_4_IN_1_GGAA4(X, Y, Z, p_2_out_ga2(X, X1)) -> IF_IF_4_IN_2_GGAA5(X, Y, Z, X1, minus_3_in_gaa3(X1, Y, Z))
IF_IF_4_IN_1_GGAA4(X, Y, Z, p_2_out_ga2(X, X1)) -> MINUS_3_IN_GAA3(X1, Y, Z)
minus_3_in_gaa3(X, Y, Z) -> if_minus_3_in_1_gaa4(X, Y, Z, le_3_in_gaa3(X, Y, B))
le_3_in_gaa3(0_0, Y, true_0) -> le_3_out_gaa3(0_0, Y, true_0)
le_3_in_gaa3(s_11(X), 0_0, false_0) -> le_3_out_gaa3(s_11(X), 0_0, false_0)
le_3_in_gaa3(s_11(X), s_11(Y), B) -> if_le_3_in_1_gaa4(X, Y, B, le_3_in_gaa3(X, Y, B))
if_le_3_in_1_gaa4(X, Y, B, le_3_out_gaa3(X, Y, B)) -> le_3_out_gaa3(s_11(X), s_11(Y), B)
if_minus_3_in_1_gaa4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_in_ggaa4(B, X, Y, Z))
if_4_in_ggaa4(true_0, X, Y, 0_0) -> if_4_out_ggaa4(true_0, X, Y, 0_0)
if_4_in_ggaa4(false_0, X, Y, s_11(Z)) -> if_if_4_in_1_ggaa4(X, Y, Z, p_2_in_ga2(X, X1))
p_2_in_ga2(0_0, 0_0) -> p_2_out_ga2(0_0, 0_0)
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_if_4_in_1_ggaa4(X, Y, Z, p_2_out_ga2(X, X1)) -> if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_in_gaa3(X1, Y, Z))
if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_out_gaa3(X1, Y, Z)) -> if_4_out_ggaa4(false_0, X, Y, s_11(Z))
if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_out_ggaa4(B, X, Y, Z)) -> minus_3_out_gaa3(X, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
MINUS_3_IN_GAA3(X, Y, Z) -> IF_MINUS_3_IN_1_GAA4(X, Y, Z, le_3_in_gaa3(X, Y, B))
MINUS_3_IN_GAA3(X, Y, Z) -> LE_3_IN_GAA3(X, Y, B)
LE_3_IN_GAA3(s_11(X), s_11(Y), B) -> IF_LE_3_IN_1_GAA4(X, Y, B, le_3_in_gaa3(X, Y, B))
LE_3_IN_GAA3(s_11(X), s_11(Y), B) -> LE_3_IN_GAA3(X, Y, B)
IF_MINUS_3_IN_1_GAA4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> IF_MINUS_3_IN_2_GAA5(X, Y, Z, B, if_4_in_ggaa4(B, X, Y, Z))
IF_MINUS_3_IN_1_GAA4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> IF_4_IN_GGAA4(B, X, Y, Z)
IF_4_IN_GGAA4(false_0, X, Y, s_11(Z)) -> IF_IF_4_IN_1_GGAA4(X, Y, Z, p_2_in_ga2(X, X1))
IF_4_IN_GGAA4(false_0, X, Y, s_11(Z)) -> P_2_IN_GA2(X, X1)
IF_IF_4_IN_1_GGAA4(X, Y, Z, p_2_out_ga2(X, X1)) -> IF_IF_4_IN_2_GGAA5(X, Y, Z, X1, minus_3_in_gaa3(X1, Y, Z))
IF_IF_4_IN_1_GGAA4(X, Y, Z, p_2_out_ga2(X, X1)) -> MINUS_3_IN_GAA3(X1, Y, Z)
minus_3_in_gaa3(X, Y, Z) -> if_minus_3_in_1_gaa4(X, Y, Z, le_3_in_gaa3(X, Y, B))
le_3_in_gaa3(0_0, Y, true_0) -> le_3_out_gaa3(0_0, Y, true_0)
le_3_in_gaa3(s_11(X), 0_0, false_0) -> le_3_out_gaa3(s_11(X), 0_0, false_0)
le_3_in_gaa3(s_11(X), s_11(Y), B) -> if_le_3_in_1_gaa4(X, Y, B, le_3_in_gaa3(X, Y, B))
if_le_3_in_1_gaa4(X, Y, B, le_3_out_gaa3(X, Y, B)) -> le_3_out_gaa3(s_11(X), s_11(Y), B)
if_minus_3_in_1_gaa4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_in_ggaa4(B, X, Y, Z))
if_4_in_ggaa4(true_0, X, Y, 0_0) -> if_4_out_ggaa4(true_0, X, Y, 0_0)
if_4_in_ggaa4(false_0, X, Y, s_11(Z)) -> if_if_4_in_1_ggaa4(X, Y, Z, p_2_in_ga2(X, X1))
p_2_in_ga2(0_0, 0_0) -> p_2_out_ga2(0_0, 0_0)
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_if_4_in_1_ggaa4(X, Y, Z, p_2_out_ga2(X, X1)) -> if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_in_gaa3(X1, Y, Z))
if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_out_gaa3(X1, Y, Z)) -> if_4_out_ggaa4(false_0, X, Y, s_11(Z))
if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_out_ggaa4(B, X, Y, Z)) -> minus_3_out_gaa3(X, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LE_3_IN_GAA3(s_11(X), s_11(Y), B) -> LE_3_IN_GAA3(X, Y, B)
minus_3_in_gaa3(X, Y, Z) -> if_minus_3_in_1_gaa4(X, Y, Z, le_3_in_gaa3(X, Y, B))
le_3_in_gaa3(0_0, Y, true_0) -> le_3_out_gaa3(0_0, Y, true_0)
le_3_in_gaa3(s_11(X), 0_0, false_0) -> le_3_out_gaa3(s_11(X), 0_0, false_0)
le_3_in_gaa3(s_11(X), s_11(Y), B) -> if_le_3_in_1_gaa4(X, Y, B, le_3_in_gaa3(X, Y, B))
if_le_3_in_1_gaa4(X, Y, B, le_3_out_gaa3(X, Y, B)) -> le_3_out_gaa3(s_11(X), s_11(Y), B)
if_minus_3_in_1_gaa4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_in_ggaa4(B, X, Y, Z))
if_4_in_ggaa4(true_0, X, Y, 0_0) -> if_4_out_ggaa4(true_0, X, Y, 0_0)
if_4_in_ggaa4(false_0, X, Y, s_11(Z)) -> if_if_4_in_1_ggaa4(X, Y, Z, p_2_in_ga2(X, X1))
p_2_in_ga2(0_0, 0_0) -> p_2_out_ga2(0_0, 0_0)
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_if_4_in_1_ggaa4(X, Y, Z, p_2_out_ga2(X, X1)) -> if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_in_gaa3(X1, Y, Z))
if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_out_gaa3(X1, Y, Z)) -> if_4_out_ggaa4(false_0, X, Y, s_11(Z))
if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_out_ggaa4(B, X, Y, Z)) -> minus_3_out_gaa3(X, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LE_3_IN_GAA3(s_11(X), s_11(Y), B) -> LE_3_IN_GAA3(X, Y, B)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LE_3_IN_GAA1(s_11(X)) -> LE_3_IN_GAA1(X)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_IF_4_IN_1_GGAA4(X, Y, Z, p_2_out_ga2(X, X1)) -> MINUS_3_IN_GAA3(X1, Y, Z)
IF_MINUS_3_IN_1_GAA4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> IF_4_IN_GGAA4(B, X, Y, Z)
MINUS_3_IN_GAA3(X, Y, Z) -> IF_MINUS_3_IN_1_GAA4(X, Y, Z, le_3_in_gaa3(X, Y, B))
IF_4_IN_GGAA4(false_0, X, Y, s_11(Z)) -> IF_IF_4_IN_1_GGAA4(X, Y, Z, p_2_in_ga2(X, X1))
minus_3_in_gaa3(X, Y, Z) -> if_minus_3_in_1_gaa4(X, Y, Z, le_3_in_gaa3(X, Y, B))
le_3_in_gaa3(0_0, Y, true_0) -> le_3_out_gaa3(0_0, Y, true_0)
le_3_in_gaa3(s_11(X), 0_0, false_0) -> le_3_out_gaa3(s_11(X), 0_0, false_0)
le_3_in_gaa3(s_11(X), s_11(Y), B) -> if_le_3_in_1_gaa4(X, Y, B, le_3_in_gaa3(X, Y, B))
if_le_3_in_1_gaa4(X, Y, B, le_3_out_gaa3(X, Y, B)) -> le_3_out_gaa3(s_11(X), s_11(Y), B)
if_minus_3_in_1_gaa4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_in_ggaa4(B, X, Y, Z))
if_4_in_ggaa4(true_0, X, Y, 0_0) -> if_4_out_ggaa4(true_0, X, Y, 0_0)
if_4_in_ggaa4(false_0, X, Y, s_11(Z)) -> if_if_4_in_1_ggaa4(X, Y, Z, p_2_in_ga2(X, X1))
p_2_in_ga2(0_0, 0_0) -> p_2_out_ga2(0_0, 0_0)
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_if_4_in_1_ggaa4(X, Y, Z, p_2_out_ga2(X, X1)) -> if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_in_gaa3(X1, Y, Z))
if_if_4_in_2_ggaa5(X, Y, Z, X1, minus_3_out_gaa3(X1, Y, Z)) -> if_4_out_ggaa4(false_0, X, Y, s_11(Z))
if_minus_3_in_2_gaa5(X, Y, Z, B, if_4_out_ggaa4(B, X, Y, Z)) -> minus_3_out_gaa3(X, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_IF_4_IN_1_GGAA4(X, Y, Z, p_2_out_ga2(X, X1)) -> MINUS_3_IN_GAA3(X1, Y, Z)
IF_MINUS_3_IN_1_GAA4(X, Y, Z, le_3_out_gaa3(X, Y, B)) -> IF_4_IN_GGAA4(B, X, Y, Z)
MINUS_3_IN_GAA3(X, Y, Z) -> IF_MINUS_3_IN_1_GAA4(X, Y, Z, le_3_in_gaa3(X, Y, B))
IF_4_IN_GGAA4(false_0, X, Y, s_11(Z)) -> IF_IF_4_IN_1_GGAA4(X, Y, Z, p_2_in_ga2(X, X1))
le_3_in_gaa3(0_0, Y, true_0) -> le_3_out_gaa3(0_0, Y, true_0)
le_3_in_gaa3(s_11(X), 0_0, false_0) -> le_3_out_gaa3(s_11(X), 0_0, false_0)
le_3_in_gaa3(s_11(X), s_11(Y), B) -> if_le_3_in_1_gaa4(X, Y, B, le_3_in_gaa3(X, Y, B))
p_2_in_ga2(0_0, 0_0) -> p_2_out_ga2(0_0, 0_0)
p_2_in_ga2(s_11(X), X) -> p_2_out_ga2(s_11(X), X)
if_le_3_in_1_gaa4(X, Y, B, le_3_out_gaa3(X, Y, B)) -> le_3_out_gaa3(s_11(X), s_11(Y), B)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
IF_IF_4_IN_1_GGAA1(p_2_out_ga1(X1)) -> MINUS_3_IN_GAA1(X1)
IF_MINUS_3_IN_1_GAA2(X, le_3_out_gaa1(B)) -> IF_4_IN_GGAA2(B, X)
MINUS_3_IN_GAA1(X) -> IF_MINUS_3_IN_1_GAA2(X, le_3_in_gaa1(X))
IF_4_IN_GGAA2(false_0, X) -> IF_IF_4_IN_1_GGAA1(p_2_in_ga1(X))
le_3_in_gaa1(0_0) -> le_3_out_gaa1(true_0)
le_3_in_gaa1(s_11(X)) -> le_3_out_gaa1(false_0)
le_3_in_gaa1(s_11(X)) -> if_le_3_in_1_gaa1(le_3_in_gaa1(X))
p_2_in_ga1(0_0) -> p_2_out_ga1(0_0)
p_2_in_ga1(s_11(X)) -> p_2_out_ga1(X)
if_le_3_in_1_gaa1(le_3_out_gaa1(B)) -> le_3_out_gaa1(B)
le_3_in_gaa1(x0)
p_2_in_ga1(x0)
if_le_3_in_1_gaa1(x0)
le_3_in_gaa1(0_0) -> le_3_out_gaa1(true_0)
le_3_in_gaa1(s_11(X)) -> if_le_3_in_1_gaa1(le_3_in_gaa1(X))
p_2_in_ga1(s_11(X)) -> p_2_out_ga1(X)
POL(0_0) = 2
POL(p_2_out_ga1(x1)) = 2·x1
POL(false_0) = 2
POL(true_0) = 1
POL(le_3_out_gaa1(x1)) = 1 + x1
POL(IF_MINUS_3_IN_1_GAA2(x1, x2)) = x1 + x2
POL(if_le_3_in_1_gaa1(x1)) = x1
POL(MINUS_3_IN_GAA1(x1)) = 1 + 2·x1
POL(le_3_in_gaa1(x1)) = 1 + x1
POL(p_2_in_ga1(x1)) = 2 + x1
POL(s_11(x1)) = 2 + 2·x1
POL(IF_IF_4_IN_1_GGAA1(x1)) = 1 + x1
POL(IF_4_IN_GGAA2(x1, x2)) = 1 + x1 + x2
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
IF_IF_4_IN_1_GGAA1(p_2_out_ga1(X1)) -> MINUS_3_IN_GAA1(X1)
IF_MINUS_3_IN_1_GAA2(X, le_3_out_gaa1(B)) -> IF_4_IN_GGAA2(B, X)
MINUS_3_IN_GAA1(X) -> IF_MINUS_3_IN_1_GAA2(X, le_3_in_gaa1(X))
IF_4_IN_GGAA2(false_0, X) -> IF_IF_4_IN_1_GGAA1(p_2_in_ga1(X))
le_3_in_gaa1(s_11(X)) -> le_3_out_gaa1(false_0)
p_2_in_ga1(0_0) -> p_2_out_ga1(0_0)
if_le_3_in_1_gaa1(le_3_out_gaa1(B)) -> le_3_out_gaa1(B)
le_3_in_gaa1(x0)
p_2_in_ga1(x0)
if_le_3_in_1_gaa1(x0)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
IF_IF_4_IN_1_GGAA1(p_2_out_ga1(X1)) -> MINUS_3_IN_GAA1(X1)
IF_MINUS_3_IN_1_GAA2(X, le_3_out_gaa1(B)) -> IF_4_IN_GGAA2(B, X)
MINUS_3_IN_GAA1(X) -> IF_MINUS_3_IN_1_GAA2(X, le_3_in_gaa1(X))
IF_4_IN_GGAA2(false_0, X) -> IF_IF_4_IN_1_GGAA1(p_2_in_ga1(X))
p_2_in_ga1(0_0) -> p_2_out_ga1(0_0)
le_3_in_gaa1(s_11(X)) -> le_3_out_gaa1(false_0)
le_3_in_gaa1(x0)
p_2_in_ga1(x0)
if_le_3_in_1_gaa1(x0)
IF_MINUS_3_IN_1_GAA2(X, le_3_out_gaa1(B)) -> IF_4_IN_GGAA2(B, X)
le_3_in_gaa1(s_11(X)) -> le_3_out_gaa1(false_0)
POL(0_0) = 0
POL(p_2_out_ga1(x1)) = 2·x1
POL(false_0) = 1
POL(MINUS_3_IN_GAA1(x1)) = 1 + 2·x1
POL(le_3_in_gaa1(x1)) = 1 + x1
POL(p_2_in_ga1(x1)) = x1
POL(s_11(x1)) = 2 + x1
POL(le_3_out_gaa1(x1)) = 1 + x1
POL(IF_IF_4_IN_1_GGAA1(x1)) = 1 + x1
POL(IF_MINUS_3_IN_1_GAA2(x1, x2)) = x1 + x2
POL(IF_4_IN_GGAA2(x1, x2)) = x1 + x2
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
IF_IF_4_IN_1_GGAA1(p_2_out_ga1(X1)) -> MINUS_3_IN_GAA1(X1)
MINUS_3_IN_GAA1(X) -> IF_MINUS_3_IN_1_GAA2(X, le_3_in_gaa1(X))
IF_4_IN_GGAA2(false_0, X) -> IF_IF_4_IN_1_GGAA1(p_2_in_ga1(X))
p_2_in_ga1(0_0) -> p_2_out_ga1(0_0)
le_3_in_gaa1(x0)
p_2_in_ga1(x0)
if_le_3_in_1_gaa1(x0)