↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
count2: (b,f)
flatten2: (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
count_2_in_ga2(atom_11(X), s_11(0_0)) -> count_2_out_ga2(atom_11(X), s_11(0_0))
count_2_in_ga2(cons_22(atom_11(X), Y), s_11(Z)) -> if_count_2_in_1_ga4(X, Y, Z, count_2_in_ga2(Y, Z))
count_2_in_ga2(cons_22(cons_22(U, V), W), Z) -> if_count_2_in_2_ga5(U, V, W, Z, flatten_2_in_ga2(cons_22(cons_22(U, V), W), X))
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
if_count_2_in_2_ga5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> if_count_2_in_3_ga6(U, V, W, Z, X, count_2_in_ga2(X, Z))
if_count_2_in_3_ga6(U, V, W, Z, X, count_2_out_ga2(X, Z)) -> count_2_out_ga2(cons_22(cons_22(U, V), W), Z)
if_count_2_in_1_ga4(X, Y, Z, count_2_out_ga2(Y, Z)) -> count_2_out_ga2(cons_22(atom_11(X), Y), s_11(Z))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
count_2_in_ga2(atom_11(X), s_11(0_0)) -> count_2_out_ga2(atom_11(X), s_11(0_0))
count_2_in_ga2(cons_22(atom_11(X), Y), s_11(Z)) -> if_count_2_in_1_ga4(X, Y, Z, count_2_in_ga2(Y, Z))
count_2_in_ga2(cons_22(cons_22(U, V), W), Z) -> if_count_2_in_2_ga5(U, V, W, Z, flatten_2_in_ga2(cons_22(cons_22(U, V), W), X))
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
if_count_2_in_2_ga5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> if_count_2_in_3_ga6(U, V, W, Z, X, count_2_in_ga2(X, Z))
if_count_2_in_3_ga6(U, V, W, Z, X, count_2_out_ga2(X, Z)) -> count_2_out_ga2(cons_22(cons_22(U, V), W), Z)
if_count_2_in_1_ga4(X, Y, Z, count_2_out_ga2(Y, Z)) -> count_2_out_ga2(cons_22(atom_11(X), Y), s_11(Z))
COUNT_2_IN_GA2(cons_22(atom_11(X), Y), s_11(Z)) -> IF_COUNT_2_IN_1_GA4(X, Y, Z, count_2_in_ga2(Y, Z))
COUNT_2_IN_GA2(cons_22(atom_11(X), Y), s_11(Z)) -> COUNT_2_IN_GA2(Y, Z)
COUNT_2_IN_GA2(cons_22(cons_22(U, V), W), Z) -> IF_COUNT_2_IN_2_GA5(U, V, W, Z, flatten_2_in_ga2(cons_22(cons_22(U, V), W), X))
COUNT_2_IN_GA2(cons_22(cons_22(U, V), W), Z) -> FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X)
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> IF_FLATTEN_2_IN_1_GA4(X, U, Y, flatten_2_in_ga2(U, Y))
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> FLATTEN_2_IN_GA2(U, Y)
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> IF_FLATTEN_2_IN_2_GA5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> FLATTEN_2_IN_GA2(cons_22(U, cons_22(V, W)), X)
IF_COUNT_2_IN_2_GA5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> IF_COUNT_2_IN_3_GA6(U, V, W, Z, X, count_2_in_ga2(X, Z))
IF_COUNT_2_IN_2_GA5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> COUNT_2_IN_GA2(X, Z)
count_2_in_ga2(atom_11(X), s_11(0_0)) -> count_2_out_ga2(atom_11(X), s_11(0_0))
count_2_in_ga2(cons_22(atom_11(X), Y), s_11(Z)) -> if_count_2_in_1_ga4(X, Y, Z, count_2_in_ga2(Y, Z))
count_2_in_ga2(cons_22(cons_22(U, V), W), Z) -> if_count_2_in_2_ga5(U, V, W, Z, flatten_2_in_ga2(cons_22(cons_22(U, V), W), X))
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
if_count_2_in_2_ga5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> if_count_2_in_3_ga6(U, V, W, Z, X, count_2_in_ga2(X, Z))
if_count_2_in_3_ga6(U, V, W, Z, X, count_2_out_ga2(X, Z)) -> count_2_out_ga2(cons_22(cons_22(U, V), W), Z)
if_count_2_in_1_ga4(X, Y, Z, count_2_out_ga2(Y, Z)) -> count_2_out_ga2(cons_22(atom_11(X), Y), s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
COUNT_2_IN_GA2(cons_22(atom_11(X), Y), s_11(Z)) -> IF_COUNT_2_IN_1_GA4(X, Y, Z, count_2_in_ga2(Y, Z))
COUNT_2_IN_GA2(cons_22(atom_11(X), Y), s_11(Z)) -> COUNT_2_IN_GA2(Y, Z)
COUNT_2_IN_GA2(cons_22(cons_22(U, V), W), Z) -> IF_COUNT_2_IN_2_GA5(U, V, W, Z, flatten_2_in_ga2(cons_22(cons_22(U, V), W), X))
COUNT_2_IN_GA2(cons_22(cons_22(U, V), W), Z) -> FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X)
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> IF_FLATTEN_2_IN_1_GA4(X, U, Y, flatten_2_in_ga2(U, Y))
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> FLATTEN_2_IN_GA2(U, Y)
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> IF_FLATTEN_2_IN_2_GA5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> FLATTEN_2_IN_GA2(cons_22(U, cons_22(V, W)), X)
IF_COUNT_2_IN_2_GA5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> IF_COUNT_2_IN_3_GA6(U, V, W, Z, X, count_2_in_ga2(X, Z))
IF_COUNT_2_IN_2_GA5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> COUNT_2_IN_GA2(X, Z)
count_2_in_ga2(atom_11(X), s_11(0_0)) -> count_2_out_ga2(atom_11(X), s_11(0_0))
count_2_in_ga2(cons_22(atom_11(X), Y), s_11(Z)) -> if_count_2_in_1_ga4(X, Y, Z, count_2_in_ga2(Y, Z))
count_2_in_ga2(cons_22(cons_22(U, V), W), Z) -> if_count_2_in_2_ga5(U, V, W, Z, flatten_2_in_ga2(cons_22(cons_22(U, V), W), X))
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
if_count_2_in_2_ga5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> if_count_2_in_3_ga6(U, V, W, Z, X, count_2_in_ga2(X, Z))
if_count_2_in_3_ga6(U, V, W, Z, X, count_2_out_ga2(X, Z)) -> count_2_out_ga2(cons_22(cons_22(U, V), W), Z)
if_count_2_in_1_ga4(X, Y, Z, count_2_out_ga2(Y, Z)) -> count_2_out_ga2(cons_22(atom_11(X), Y), s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> FLATTEN_2_IN_GA2(U, Y)
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> FLATTEN_2_IN_GA2(cons_22(U, cons_22(V, W)), X)
count_2_in_ga2(atom_11(X), s_11(0_0)) -> count_2_out_ga2(atom_11(X), s_11(0_0))
count_2_in_ga2(cons_22(atom_11(X), Y), s_11(Z)) -> if_count_2_in_1_ga4(X, Y, Z, count_2_in_ga2(Y, Z))
count_2_in_ga2(cons_22(cons_22(U, V), W), Z) -> if_count_2_in_2_ga5(U, V, W, Z, flatten_2_in_ga2(cons_22(cons_22(U, V), W), X))
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
if_count_2_in_2_ga5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> if_count_2_in_3_ga6(U, V, W, Z, X, count_2_in_ga2(X, Z))
if_count_2_in_3_ga6(U, V, W, Z, X, count_2_out_ga2(X, Z)) -> count_2_out_ga2(cons_22(cons_22(U, V), W), Z)
if_count_2_in_1_ga4(X, Y, Z, count_2_out_ga2(Y, Z)) -> count_2_out_ga2(cons_22(atom_11(X), Y), s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> FLATTEN_2_IN_GA2(U, Y)
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> FLATTEN_2_IN_GA2(cons_22(U, cons_22(V, W)), X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ PiDP
FLATTEN_2_IN_GA1(cons_22(atom_11(X), U)) -> FLATTEN_2_IN_GA1(U)
FLATTEN_2_IN_GA1(cons_22(cons_22(U, V), W)) -> FLATTEN_2_IN_GA1(cons_22(U, cons_22(V, W)))
The remaining Dependency Pairs were at least non-strictly be oriented.
FLATTEN_2_IN_GA1(cons_22(atom_11(X), U)) -> FLATTEN_2_IN_GA1(U)
With the implicit AFS there is no usable rule.
FLATTEN_2_IN_GA1(cons_22(cons_22(U, V), W)) -> FLATTEN_2_IN_GA1(cons_22(U, cons_22(V, W)))
Used ordering: POLO with Polynomial interpretation:
POL(FLATTEN_2_IN_GA1(x1)) = x1
POL(atom_11(x1)) = 1 + x1
POL(cons_22(x1, x2)) = x1 + x2
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
FLATTEN_2_IN_GA1(cons_22(cons_22(U, V), W)) -> FLATTEN_2_IN_GA1(cons_22(U, cons_22(V, W)))
Order:Homeomorphic Embedding Order
AFS:
cons_22(x1, x2) = cons_21(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules.
none
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_COUNT_2_IN_2_GA5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> COUNT_2_IN_GA2(X, Z)
COUNT_2_IN_GA2(cons_22(atom_11(X), Y), s_11(Z)) -> COUNT_2_IN_GA2(Y, Z)
COUNT_2_IN_GA2(cons_22(cons_22(U, V), W), Z) -> IF_COUNT_2_IN_2_GA5(U, V, W, Z, flatten_2_in_ga2(cons_22(cons_22(U, V), W), X))
count_2_in_ga2(atom_11(X), s_11(0_0)) -> count_2_out_ga2(atom_11(X), s_11(0_0))
count_2_in_ga2(cons_22(atom_11(X), Y), s_11(Z)) -> if_count_2_in_1_ga4(X, Y, Z, count_2_in_ga2(Y, Z))
count_2_in_ga2(cons_22(cons_22(U, V), W), Z) -> if_count_2_in_2_ga5(U, V, W, Z, flatten_2_in_ga2(cons_22(cons_22(U, V), W), X))
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
if_count_2_in_2_ga5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> if_count_2_in_3_ga6(U, V, W, Z, X, count_2_in_ga2(X, Z))
if_count_2_in_3_ga6(U, V, W, Z, X, count_2_out_ga2(X, Z)) -> count_2_out_ga2(cons_22(cons_22(U, V), W), Z)
if_count_2_in_1_ga4(X, Y, Z, count_2_out_ga2(Y, Z)) -> count_2_out_ga2(cons_22(atom_11(X), Y), s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_COUNT_2_IN_2_GA5(U, V, W, Z, flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)) -> COUNT_2_IN_GA2(X, Z)
COUNT_2_IN_GA2(cons_22(atom_11(X), Y), s_11(Z)) -> COUNT_2_IN_GA2(Y, Z)
COUNT_2_IN_GA2(cons_22(cons_22(U, V), W), Z) -> IF_COUNT_2_IN_2_GA5(U, V, W, Z, flatten_2_in_ga2(cons_22(cons_22(U, V), W), X))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
IF_COUNT_2_IN_2_GA1(flatten_2_out_ga1(X)) -> COUNT_2_IN_GA1(X)
COUNT_2_IN_GA1(cons_22(atom_11(X), Y)) -> COUNT_2_IN_GA1(Y)
COUNT_2_IN_GA1(cons_22(cons_22(U, V), W)) -> IF_COUNT_2_IN_2_GA1(flatten_2_in_ga1(cons_22(cons_22(U, V), W)))
flatten_2_in_ga1(cons_22(cons_22(U, V), W)) -> if_flatten_2_in_2_ga1(flatten_2_in_ga1(cons_22(U, cons_22(V, W))))
if_flatten_2_in_2_ga1(flatten_2_out_ga1(X)) -> flatten_2_out_ga1(X)
flatten_2_in_ga1(cons_22(atom_11(X), U)) -> if_flatten_2_in_1_ga2(X, flatten_2_in_ga1(U))
if_flatten_2_in_1_ga2(X, flatten_2_out_ga1(Y)) -> flatten_2_out_ga1(._22(X, Y))
flatten_2_in_ga1(atom_11(X)) -> flatten_2_out_ga1(._22(X, []_0))
flatten_2_in_ga1(x0)
if_flatten_2_in_2_ga1(x0)
if_flatten_2_in_1_ga2(x0, x1)
COUNT_2_IN_GA1(cons_22(atom_11(X), Y)) -> COUNT_2_IN_GA1(Y)
COUNT_2_IN_GA1(cons_22(cons_22(U, V), W)) -> IF_COUNT_2_IN_2_GA1(flatten_2_in_ga1(cons_22(cons_22(U, V), W)))
flatten_2_in_ga1(cons_22(cons_22(U, V), W)) -> if_flatten_2_in_2_ga1(flatten_2_in_ga1(cons_22(U, cons_22(V, W))))
if_flatten_2_in_2_ga1(flatten_2_out_ga1(X)) -> flatten_2_out_ga1(X)
flatten_2_in_ga1(cons_22(atom_11(X), U)) -> if_flatten_2_in_1_ga2(X, flatten_2_in_ga1(U))
flatten_2_in_ga1(atom_11(X)) -> flatten_2_out_ga1(._22(X, []_0))
POL(COUNT_2_IN_GA1(x1)) = 2·x1
POL(flatten_2_in_ga1(x1)) = 1 + x1
POL(flatten_2_out_ga1(x1)) = 2·x1
POL(._22(x1, x2)) = x1 + x2
POL(if_flatten_2_in_2_ga1(x1)) = 1 + x1
POL(atom_11(x1)) = 2·x1
POL([]_0) = 0
POL(IF_COUNT_2_IN_2_GA1(x1)) = x1
POL(cons_22(x1, x2)) = 2 + 2·x1 + x2
POL(if_flatten_2_in_1_ga2(x1, x2)) = 2·x1 + x2
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
IF_COUNT_2_IN_2_GA1(flatten_2_out_ga1(X)) -> COUNT_2_IN_GA1(X)
if_flatten_2_in_1_ga2(X, flatten_2_out_ga1(Y)) -> flatten_2_out_ga1(._22(X, Y))
flatten_2_in_ga1(x0)
if_flatten_2_in_2_ga1(x0)
if_flatten_2_in_1_ga2(x0, x1)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPSizeChangeProof
COUNT_2_IN_GA1(cons_22(atom_11(X), Y)) -> COUNT_2_IN_GA1(Y)
if_flatten_2_in_1_ga2(X, flatten_2_out_ga1(Y)) -> flatten_2_out_ga1(._22(X, Y))
flatten_2_in_ga1(x0)
if_flatten_2_in_2_ga1(x0)
if_flatten_2_in_1_ga2(x0, x1)
From the DPs we obtained the following set of size-change graphs: