↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
flatten2: (b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> IF_FLATTEN_2_IN_1_GA4(X, U, Y, flatten_2_in_ga2(U, Y))
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> FLATTEN_2_IN_GA2(U, Y)
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> IF_FLATTEN_2_IN_2_GA5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> FLATTEN_2_IN_GA2(cons_22(U, cons_22(V, W)), X)
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> IF_FLATTEN_2_IN_1_GA4(X, U, Y, flatten_2_in_ga2(U, Y))
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> FLATTEN_2_IN_GA2(U, Y)
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> IF_FLATTEN_2_IN_2_GA5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> FLATTEN_2_IN_GA2(cons_22(U, cons_22(V, W)), X)
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> FLATTEN_2_IN_GA2(U, Y)
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> FLATTEN_2_IN_GA2(cons_22(U, cons_22(V, W)), X)
flatten_2_in_ga2(atom_11(X), ._22(X, []_0)) -> flatten_2_out_ga2(atom_11(X), ._22(X, []_0))
flatten_2_in_ga2(cons_22(atom_11(X), U), ._22(X, Y)) -> if_flatten_2_in_1_ga4(X, U, Y, flatten_2_in_ga2(U, Y))
flatten_2_in_ga2(cons_22(cons_22(U, V), W), X) -> if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_in_ga2(cons_22(U, cons_22(V, W)), X))
if_flatten_2_in_2_ga5(U, V, W, X, flatten_2_out_ga2(cons_22(U, cons_22(V, W)), X)) -> flatten_2_out_ga2(cons_22(cons_22(U, V), W), X)
if_flatten_2_in_1_ga4(X, U, Y, flatten_2_out_ga2(U, Y)) -> flatten_2_out_ga2(cons_22(atom_11(X), U), ._22(X, Y))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
FLATTEN_2_IN_GA2(cons_22(atom_11(X), U), ._22(X, Y)) -> FLATTEN_2_IN_GA2(U, Y)
FLATTEN_2_IN_GA2(cons_22(cons_22(U, V), W), X) -> FLATTEN_2_IN_GA2(cons_22(U, cons_22(V, W)), X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
FLATTEN_2_IN_GA1(cons_22(atom_11(X), U)) -> FLATTEN_2_IN_GA1(U)
FLATTEN_2_IN_GA1(cons_22(cons_22(U, V), W)) -> FLATTEN_2_IN_GA1(cons_22(U, cons_22(V, W)))
FLATTEN_2_IN_GA1(cons_22(atom_11(X), U)) -> FLATTEN_2_IN_GA1(U)
POL(FLATTEN_2_IN_GA1(x1)) = 1 + x1
POL(atom_11(x1)) = 1 + x1
POL(cons_22(x1, x2)) = x1 + x2
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPSizeChangeProof
FLATTEN_2_IN_GA1(cons_22(cons_22(U, V), W)) -> FLATTEN_2_IN_GA1(cons_22(U, cons_22(V, W)))
Order:Homeomorphic Embedding Order
AFS:
cons_22(x1, x2) = cons_21(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules.
none