Left Termination of the query pattern d(b,b,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

d3(X, X, 10).
d3(T, underscore, 00) :- isnumber1(T).
d3(times2(U, V), X, times2(B, U) + times2(A, V)) :- d3(U, X, A), d3(V, X, B).
d3(div2(U, V), X, W) :- d3(times2(U, power2(V, p1(00))), X, W).
d3(power2(U, V), X, times2(V, times2(W, power2(U, p1(V))))) :- isnumber1(V), d3(U, X, W).
isnumber1(00).
isnumber1(s1(X)) :- isnumber1(X).
isnumber1(p1(X)) :- isnumber1(X).


With regard to the inferred argument filtering the predicates were used in the following modes:
d3: (b,b,f)
isnumber1: (b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))

The argument filtering Pi contains the following mapping:
d_3_in_gga3(x1, x2, x3)  =  d_3_in_gga2(x1, x2)
1_0  =  1_0
0_0  =  0_0
times_22(x1, x2)  =  times_22(x1, x2)
+2(x1, x2)  =  +2(x1, x2)
div_22(x1, x2)  =  div_22(x1, x2)
power_22(x1, x2)  =  power_22(x1, x2)
p_11(x1)  =  p_11(x1)
s_11(x1)  =  s_11(x1)
d_3_out_gga3(x1, x2, x3)  =  d_3_out_gga1(x3)
if_d_3_in_1_gga3(x1, x2, x3)  =  if_d_3_in_1_gga1(x3)
isnumber_1_in_g1(x1)  =  isnumber_1_in_g1(x1)
isnumber_1_out_g1(x1)  =  isnumber_1_out_g
if_isnumber_1_in_1_g2(x1, x2)  =  if_isnumber_1_in_1_g1(x2)
if_isnumber_1_in_2_g2(x1, x2)  =  if_isnumber_1_in_2_g1(x2)
if_d_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_2_gga4(x1, x2, x3, x6)
if_d_3_in_4_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_4_gga1(x5)
if_d_3_in_5_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_5_gga4(x1, x2, x3, x5)
if_d_3_in_6_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_6_gga3(x1, x2, x5)
if_d_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_3_gga4(x1, x2, x5, x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))

The argument filtering Pi contains the following mapping:
d_3_in_gga3(x1, x2, x3)  =  d_3_in_gga2(x1, x2)
1_0  =  1_0
0_0  =  0_0
times_22(x1, x2)  =  times_22(x1, x2)
+2(x1, x2)  =  +2(x1, x2)
div_22(x1, x2)  =  div_22(x1, x2)
power_22(x1, x2)  =  power_22(x1, x2)
p_11(x1)  =  p_11(x1)
s_11(x1)  =  s_11(x1)
d_3_out_gga3(x1, x2, x3)  =  d_3_out_gga1(x3)
if_d_3_in_1_gga3(x1, x2, x3)  =  if_d_3_in_1_gga1(x3)
isnumber_1_in_g1(x1)  =  isnumber_1_in_g1(x1)
isnumber_1_out_g1(x1)  =  isnumber_1_out_g
if_isnumber_1_in_1_g2(x1, x2)  =  if_isnumber_1_in_1_g1(x2)
if_isnumber_1_in_2_g2(x1, x2)  =  if_isnumber_1_in_2_g1(x2)
if_d_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_2_gga4(x1, x2, x3, x6)
if_d_3_in_4_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_4_gga1(x5)
if_d_3_in_5_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_5_gga4(x1, x2, x3, x5)
if_d_3_in_6_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_6_gga3(x1, x2, x5)
if_d_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_3_gga4(x1, x2, x5, x6)


Pi DP problem:
The TRS P consists of the following rules:

D_3_IN_GGA3(T, underscore, 0_0) -> IF_D_3_IN_1_GGA3(T, underscore, isnumber_1_in_g1(T))
D_3_IN_GGA3(T, underscore, 0_0) -> ISNUMBER_1_IN_G1(T)
ISNUMBER_1_IN_G1(s_11(X)) -> IF_ISNUMBER_1_IN_1_G2(X, isnumber_1_in_g1(X))
ISNUMBER_1_IN_G1(s_11(X)) -> ISNUMBER_1_IN_G1(X)
ISNUMBER_1_IN_G1(p_11(X)) -> IF_ISNUMBER_1_IN_2_G2(X, isnumber_1_in_g1(X))
ISNUMBER_1_IN_G1(p_11(X)) -> ISNUMBER_1_IN_G1(X)
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_in_gga3(U, X, A))
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> D_3_IN_GGA3(U, X, A)
D_3_IN_GGA3(div_22(U, V), X, W) -> IF_D_3_IN_4_GGA5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
D_3_IN_GGA3(div_22(U, V), X, W) -> D_3_IN_GGA3(times_22(U, power_22(V, p_11(0_0))), X, W)
D_3_IN_GGA3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_in_g1(V))
D_3_IN_GGA3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> ISNUMBER_1_IN_G1(V)
IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_out_g1(V)) -> IF_D_3_IN_6_GGA5(U, V, X, W, d_3_in_gga3(U, X, W))
IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_out_g1(V)) -> D_3_IN_GGA3(U, X, W)
IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> IF_D_3_IN_3_GGA6(U, V, X, B, A, d_3_in_gga3(V, X, B))
IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> D_3_IN_GGA3(V, X, B)

The TRS R consists of the following rules:

d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))

The argument filtering Pi contains the following mapping:
d_3_in_gga3(x1, x2, x3)  =  d_3_in_gga2(x1, x2)
1_0  =  1_0
0_0  =  0_0
times_22(x1, x2)  =  times_22(x1, x2)
+2(x1, x2)  =  +2(x1, x2)
div_22(x1, x2)  =  div_22(x1, x2)
power_22(x1, x2)  =  power_22(x1, x2)
p_11(x1)  =  p_11(x1)
s_11(x1)  =  s_11(x1)
d_3_out_gga3(x1, x2, x3)  =  d_3_out_gga1(x3)
if_d_3_in_1_gga3(x1, x2, x3)  =  if_d_3_in_1_gga1(x3)
isnumber_1_in_g1(x1)  =  isnumber_1_in_g1(x1)
isnumber_1_out_g1(x1)  =  isnumber_1_out_g
if_isnumber_1_in_1_g2(x1, x2)  =  if_isnumber_1_in_1_g1(x2)
if_isnumber_1_in_2_g2(x1, x2)  =  if_isnumber_1_in_2_g1(x2)
if_d_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_2_gga4(x1, x2, x3, x6)
if_d_3_in_4_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_4_gga1(x5)
if_d_3_in_5_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_5_gga4(x1, x2, x3, x5)
if_d_3_in_6_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_6_gga3(x1, x2, x5)
if_d_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_3_gga4(x1, x2, x5, x6)
IF_D_3_IN_1_GGA3(x1, x2, x3)  =  IF_D_3_IN_1_GGA1(x3)
ISNUMBER_1_IN_G1(x1)  =  ISNUMBER_1_IN_G1(x1)
IF_D_3_IN_3_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_D_3_IN_3_GGA4(x1, x2, x5, x6)
IF_D_3_IN_2_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_D_3_IN_2_GGA4(x1, x2, x3, x6)
IF_D_3_IN_5_GGA5(x1, x2, x3, x4, x5)  =  IF_D_3_IN_5_GGA4(x1, x2, x3, x5)
IF_ISNUMBER_1_IN_2_G2(x1, x2)  =  IF_ISNUMBER_1_IN_2_G1(x2)
IF_D_3_IN_6_GGA5(x1, x2, x3, x4, x5)  =  IF_D_3_IN_6_GGA3(x1, x2, x5)
D_3_IN_GGA3(x1, x2, x3)  =  D_3_IN_GGA2(x1, x2)
IF_ISNUMBER_1_IN_1_G2(x1, x2)  =  IF_ISNUMBER_1_IN_1_G1(x2)
IF_D_3_IN_4_GGA5(x1, x2, x3, x4, x5)  =  IF_D_3_IN_4_GGA1(x5)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

D_3_IN_GGA3(T, underscore, 0_0) -> IF_D_3_IN_1_GGA3(T, underscore, isnumber_1_in_g1(T))
D_3_IN_GGA3(T, underscore, 0_0) -> ISNUMBER_1_IN_G1(T)
ISNUMBER_1_IN_G1(s_11(X)) -> IF_ISNUMBER_1_IN_1_G2(X, isnumber_1_in_g1(X))
ISNUMBER_1_IN_G1(s_11(X)) -> ISNUMBER_1_IN_G1(X)
ISNUMBER_1_IN_G1(p_11(X)) -> IF_ISNUMBER_1_IN_2_G2(X, isnumber_1_in_g1(X))
ISNUMBER_1_IN_G1(p_11(X)) -> ISNUMBER_1_IN_G1(X)
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_in_gga3(U, X, A))
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> D_3_IN_GGA3(U, X, A)
D_3_IN_GGA3(div_22(U, V), X, W) -> IF_D_3_IN_4_GGA5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
D_3_IN_GGA3(div_22(U, V), X, W) -> D_3_IN_GGA3(times_22(U, power_22(V, p_11(0_0))), X, W)
D_3_IN_GGA3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_in_g1(V))
D_3_IN_GGA3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> ISNUMBER_1_IN_G1(V)
IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_out_g1(V)) -> IF_D_3_IN_6_GGA5(U, V, X, W, d_3_in_gga3(U, X, W))
IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_out_g1(V)) -> D_3_IN_GGA3(U, X, W)
IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> IF_D_3_IN_3_GGA6(U, V, X, B, A, d_3_in_gga3(V, X, B))
IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> D_3_IN_GGA3(V, X, B)

The TRS R consists of the following rules:

d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))

The argument filtering Pi contains the following mapping:
d_3_in_gga3(x1, x2, x3)  =  d_3_in_gga2(x1, x2)
1_0  =  1_0
0_0  =  0_0
times_22(x1, x2)  =  times_22(x1, x2)
+2(x1, x2)  =  +2(x1, x2)
div_22(x1, x2)  =  div_22(x1, x2)
power_22(x1, x2)  =  power_22(x1, x2)
p_11(x1)  =  p_11(x1)
s_11(x1)  =  s_11(x1)
d_3_out_gga3(x1, x2, x3)  =  d_3_out_gga1(x3)
if_d_3_in_1_gga3(x1, x2, x3)  =  if_d_3_in_1_gga1(x3)
isnumber_1_in_g1(x1)  =  isnumber_1_in_g1(x1)
isnumber_1_out_g1(x1)  =  isnumber_1_out_g
if_isnumber_1_in_1_g2(x1, x2)  =  if_isnumber_1_in_1_g1(x2)
if_isnumber_1_in_2_g2(x1, x2)  =  if_isnumber_1_in_2_g1(x2)
if_d_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_2_gga4(x1, x2, x3, x6)
if_d_3_in_4_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_4_gga1(x5)
if_d_3_in_5_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_5_gga4(x1, x2, x3, x5)
if_d_3_in_6_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_6_gga3(x1, x2, x5)
if_d_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_3_gga4(x1, x2, x5, x6)
IF_D_3_IN_1_GGA3(x1, x2, x3)  =  IF_D_3_IN_1_GGA1(x3)
ISNUMBER_1_IN_G1(x1)  =  ISNUMBER_1_IN_G1(x1)
IF_D_3_IN_3_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_D_3_IN_3_GGA4(x1, x2, x5, x6)
IF_D_3_IN_2_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_D_3_IN_2_GGA4(x1, x2, x3, x6)
IF_D_3_IN_5_GGA5(x1, x2, x3, x4, x5)  =  IF_D_3_IN_5_GGA4(x1, x2, x3, x5)
IF_ISNUMBER_1_IN_2_G2(x1, x2)  =  IF_ISNUMBER_1_IN_2_G1(x2)
IF_D_3_IN_6_GGA5(x1, x2, x3, x4, x5)  =  IF_D_3_IN_6_GGA3(x1, x2, x5)
D_3_IN_GGA3(x1, x2, x3)  =  D_3_IN_GGA2(x1, x2)
IF_ISNUMBER_1_IN_1_G2(x1, x2)  =  IF_ISNUMBER_1_IN_1_G1(x2)
IF_D_3_IN_4_GGA5(x1, x2, x3, x4, x5)  =  IF_D_3_IN_4_GGA1(x5)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 2 SCCs with 8 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

ISNUMBER_1_IN_G1(p_11(X)) -> ISNUMBER_1_IN_G1(X)
ISNUMBER_1_IN_G1(s_11(X)) -> ISNUMBER_1_IN_G1(X)

The TRS R consists of the following rules:

d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))

The argument filtering Pi contains the following mapping:
d_3_in_gga3(x1, x2, x3)  =  d_3_in_gga2(x1, x2)
1_0  =  1_0
0_0  =  0_0
times_22(x1, x2)  =  times_22(x1, x2)
+2(x1, x2)  =  +2(x1, x2)
div_22(x1, x2)  =  div_22(x1, x2)
power_22(x1, x2)  =  power_22(x1, x2)
p_11(x1)  =  p_11(x1)
s_11(x1)  =  s_11(x1)
d_3_out_gga3(x1, x2, x3)  =  d_3_out_gga1(x3)
if_d_3_in_1_gga3(x1, x2, x3)  =  if_d_3_in_1_gga1(x3)
isnumber_1_in_g1(x1)  =  isnumber_1_in_g1(x1)
isnumber_1_out_g1(x1)  =  isnumber_1_out_g
if_isnumber_1_in_1_g2(x1, x2)  =  if_isnumber_1_in_1_g1(x2)
if_isnumber_1_in_2_g2(x1, x2)  =  if_isnumber_1_in_2_g1(x2)
if_d_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_2_gga4(x1, x2, x3, x6)
if_d_3_in_4_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_4_gga1(x5)
if_d_3_in_5_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_5_gga4(x1, x2, x3, x5)
if_d_3_in_6_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_6_gga3(x1, x2, x5)
if_d_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_3_gga4(x1, x2, x5, x6)
ISNUMBER_1_IN_G1(x1)  =  ISNUMBER_1_IN_G1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

ISNUMBER_1_IN_G1(p_11(X)) -> ISNUMBER_1_IN_G1(X)
ISNUMBER_1_IN_G1(s_11(X)) -> ISNUMBER_1_IN_G1(X)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

ISNUMBER_1_IN_G1(p_11(X)) -> ISNUMBER_1_IN_G1(X)
ISNUMBER_1_IN_G1(s_11(X)) -> ISNUMBER_1_IN_G1(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {ISNUMBER_1_IN_G1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> D_3_IN_GGA3(V, X, B)
D_3_IN_GGA3(div_22(U, V), X, W) -> D_3_IN_GGA3(times_22(U, power_22(V, p_11(0_0))), X, W)
IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_out_g1(V)) -> D_3_IN_GGA3(U, X, W)
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_in_gga3(U, X, A))
D_3_IN_GGA3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_in_g1(V))
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> D_3_IN_GGA3(U, X, A)

The TRS R consists of the following rules:

d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))

The argument filtering Pi contains the following mapping:
d_3_in_gga3(x1, x2, x3)  =  d_3_in_gga2(x1, x2)
1_0  =  1_0
0_0  =  0_0
times_22(x1, x2)  =  times_22(x1, x2)
+2(x1, x2)  =  +2(x1, x2)
div_22(x1, x2)  =  div_22(x1, x2)
power_22(x1, x2)  =  power_22(x1, x2)
p_11(x1)  =  p_11(x1)
s_11(x1)  =  s_11(x1)
d_3_out_gga3(x1, x2, x3)  =  d_3_out_gga1(x3)
if_d_3_in_1_gga3(x1, x2, x3)  =  if_d_3_in_1_gga1(x3)
isnumber_1_in_g1(x1)  =  isnumber_1_in_g1(x1)
isnumber_1_out_g1(x1)  =  isnumber_1_out_g
if_isnumber_1_in_1_g2(x1, x2)  =  if_isnumber_1_in_1_g1(x2)
if_isnumber_1_in_2_g2(x1, x2)  =  if_isnumber_1_in_2_g1(x2)
if_d_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_2_gga4(x1, x2, x3, x6)
if_d_3_in_4_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_4_gga1(x5)
if_d_3_in_5_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_5_gga4(x1, x2, x3, x5)
if_d_3_in_6_gga5(x1, x2, x3, x4, x5)  =  if_d_3_in_6_gga3(x1, x2, x5)
if_d_3_in_3_gga6(x1, x2, x3, x4, x5, x6)  =  if_d_3_in_3_gga4(x1, x2, x5, x6)
IF_D_3_IN_2_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_D_3_IN_2_GGA4(x1, x2, x3, x6)
IF_D_3_IN_5_GGA5(x1, x2, x3, x4, x5)  =  IF_D_3_IN_5_GGA4(x1, x2, x3, x5)
D_3_IN_GGA3(x1, x2, x3)  =  D_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ PiDPToQDPProof
QDP
                    ↳ QDPPoloProof

Q DP problem:
The TRS P consists of the following rules:

IF_D_3_IN_2_GGA4(U, V, X, d_3_out_gga1(A)) -> D_3_IN_GGA2(V, X)
D_3_IN_GGA2(div_22(U, V), X) -> D_3_IN_GGA2(times_22(U, power_22(V, p_11(0_0))), X)
IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_out_g) -> D_3_IN_GGA2(U, X)
D_3_IN_GGA2(times_22(U, V), X) -> IF_D_3_IN_2_GGA4(U, V, X, d_3_in_gga2(U, X))
D_3_IN_GGA2(power_22(U, V), X) -> IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_in_g1(V))
D_3_IN_GGA2(times_22(U, V), X) -> D_3_IN_GGA2(U, X)

The TRS R consists of the following rules:

d_3_in_gga2(X, X) -> d_3_out_gga1(1_0)
d_3_in_gga2(T, underscore) -> if_d_3_in_1_gga1(isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g1(isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g1(isnumber_1_in_g1(X))
if_isnumber_1_in_2_g1(isnumber_1_out_g) -> isnumber_1_out_g
if_isnumber_1_in_1_g1(isnumber_1_out_g) -> isnumber_1_out_g
if_d_3_in_1_gga1(isnumber_1_out_g) -> d_3_out_gga1(0_0)
d_3_in_gga2(times_22(U, V), X) -> if_d_3_in_2_gga4(U, V, X, d_3_in_gga2(U, X))
d_3_in_gga2(div_22(U, V), X) -> if_d_3_in_4_gga1(d_3_in_gga2(times_22(U, power_22(V, p_11(0_0))), X))
d_3_in_gga2(power_22(U, V), X) -> if_d_3_in_5_gga4(U, V, X, isnumber_1_in_g1(V))
if_d_3_in_5_gga4(U, V, X, isnumber_1_out_g) -> if_d_3_in_6_gga3(U, V, d_3_in_gga2(U, X))
if_d_3_in_6_gga3(U, V, d_3_out_gga1(W)) -> d_3_out_gga1(times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga1(d_3_out_gga1(W)) -> d_3_out_gga1(W)
if_d_3_in_2_gga4(U, V, X, d_3_out_gga1(A)) -> if_d_3_in_3_gga4(U, V, A, d_3_in_gga2(V, X))
if_d_3_in_3_gga4(U, V, A, d_3_out_gga1(B)) -> d_3_out_gga1(+2(times_22(B, U), times_22(A, V)))

The set Q consists of the following terms:

d_3_in_gga2(x0, x1)
isnumber_1_in_g1(x0)
if_isnumber_1_in_2_g1(x0)
if_isnumber_1_in_1_g1(x0)
if_d_3_in_1_gga1(x0)
if_d_3_in_5_gga4(x0, x1, x2, x3)
if_d_3_in_6_gga3(x0, x1, x2)
if_d_3_in_4_gga1(x0)
if_d_3_in_2_gga4(x0, x1, x2, x3)
if_d_3_in_3_gga4(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {D_3_IN_GGA2, IF_D_3_IN_2_GGA4, IF_D_3_IN_5_GGA4}.
By using a polynomial ordering, the following set of Dependency Pairs of this DP problem can be strictly oriented.

D_3_IN_GGA2(div_22(U, V), X) -> D_3_IN_GGA2(times_22(U, power_22(V, p_11(0_0))), X)
The remaining Dependency Pairs were at least non-strictly be oriented.

IF_D_3_IN_2_GGA4(U, V, X, d_3_out_gga1(A)) -> D_3_IN_GGA2(V, X)
IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_out_g) -> D_3_IN_GGA2(U, X)
D_3_IN_GGA2(times_22(U, V), X) -> IF_D_3_IN_2_GGA4(U, V, X, d_3_in_gga2(U, X))
D_3_IN_GGA2(power_22(U, V), X) -> IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_in_g1(V))
D_3_IN_GGA2(times_22(U, V), X) -> D_3_IN_GGA2(U, X)
With the implicit AFS there is no usable rule.

Used ordering: POLO with Polynomial interpretation:


POL(D_3_IN_GGA2(x1, x2)) = x1   
POL(0_0) = 0   
POL(if_isnumber_1_in_1_g1(x1)) = 0   
POL(if_d_3_in_3_gga4(x1, x2, x3, x4)) = 0   
POL(power_22(x1, x2)) = x1   
POL(if_d_3_in_1_gga1(x1)) = 0   
POL(IF_D_3_IN_5_GGA4(x1, x2, x3, x4)) = x1   
POL(times_22(x1, x2)) = x1 + x2   
POL(p_11(x1)) = 0   
POL(if_isnumber_1_in_2_g1(x1)) = 0   
POL(d_3_in_gga2(x1, x2)) = 0   
POL(if_d_3_in_6_gga3(x1, x2, x3)) = 0   
POL(isnumber_1_out_g) = 0   
POL(d_3_out_gga1(x1)) = 0   
POL(isnumber_1_in_g1(x1)) = 0   
POL(if_d_3_in_2_gga4(x1, x2, x3, x4)) = 0   
POL(+2(x1, x2)) = 0   
POL(if_d_3_in_5_gga4(x1, x2, x3, x4)) = 0   
POL(IF_D_3_IN_2_GGA4(x1, x2, x3, x4)) = x2   
POL(if_d_3_in_4_gga1(x1)) = 0   
POL(s_11(x1)) = 0   
POL(1_0) = 0   
POL(div_22(x1, x2)) = 1 + x1 + x2   



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ PiDPToQDPProof
                  ↳ QDP
                    ↳ QDPPoloProof
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

IF_D_3_IN_2_GGA4(U, V, X, d_3_out_gga1(A)) -> D_3_IN_GGA2(V, X)
IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_out_g) -> D_3_IN_GGA2(U, X)
D_3_IN_GGA2(times_22(U, V), X) -> IF_D_3_IN_2_GGA4(U, V, X, d_3_in_gga2(U, X))
D_3_IN_GGA2(power_22(U, V), X) -> IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_in_g1(V))
D_3_IN_GGA2(times_22(U, V), X) -> D_3_IN_GGA2(U, X)

The TRS R consists of the following rules:

d_3_in_gga2(X, X) -> d_3_out_gga1(1_0)
d_3_in_gga2(T, underscore) -> if_d_3_in_1_gga1(isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g1(isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g1(isnumber_1_in_g1(X))
if_isnumber_1_in_2_g1(isnumber_1_out_g) -> isnumber_1_out_g
if_isnumber_1_in_1_g1(isnumber_1_out_g) -> isnumber_1_out_g
if_d_3_in_1_gga1(isnumber_1_out_g) -> d_3_out_gga1(0_0)
d_3_in_gga2(times_22(U, V), X) -> if_d_3_in_2_gga4(U, V, X, d_3_in_gga2(U, X))
d_3_in_gga2(div_22(U, V), X) -> if_d_3_in_4_gga1(d_3_in_gga2(times_22(U, power_22(V, p_11(0_0))), X))
d_3_in_gga2(power_22(U, V), X) -> if_d_3_in_5_gga4(U, V, X, isnumber_1_in_g1(V))
if_d_3_in_5_gga4(U, V, X, isnumber_1_out_g) -> if_d_3_in_6_gga3(U, V, d_3_in_gga2(U, X))
if_d_3_in_6_gga3(U, V, d_3_out_gga1(W)) -> d_3_out_gga1(times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga1(d_3_out_gga1(W)) -> d_3_out_gga1(W)
if_d_3_in_2_gga4(U, V, X, d_3_out_gga1(A)) -> if_d_3_in_3_gga4(U, V, A, d_3_in_gga2(V, X))
if_d_3_in_3_gga4(U, V, A, d_3_out_gga1(B)) -> d_3_out_gga1(+2(times_22(B, U), times_22(A, V)))

The set Q consists of the following terms:

d_3_in_gga2(x0, x1)
isnumber_1_in_g1(x0)
if_isnumber_1_in_2_g1(x0)
if_isnumber_1_in_1_g1(x0)
if_d_3_in_1_gga1(x0)
if_d_3_in_5_gga4(x0, x1, x2, x3)
if_d_3_in_6_gga3(x0, x1, x2)
if_d_3_in_4_gga1(x0)
if_d_3_in_2_gga4(x0, x1, x2, x3)
if_d_3_in_3_gga4(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {D_3_IN_GGA2, IF_D_3_IN_2_GGA4, IF_D_3_IN_5_GGA4}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: