↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
d3: (b,b,f)
isnumber1: (b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))
D_3_IN_GGA3(T, underscore, 0_0) -> IF_D_3_IN_1_GGA3(T, underscore, isnumber_1_in_g1(T))
D_3_IN_GGA3(T, underscore, 0_0) -> ISNUMBER_1_IN_G1(T)
ISNUMBER_1_IN_G1(s_11(X)) -> IF_ISNUMBER_1_IN_1_G2(X, isnumber_1_in_g1(X))
ISNUMBER_1_IN_G1(s_11(X)) -> ISNUMBER_1_IN_G1(X)
ISNUMBER_1_IN_G1(p_11(X)) -> IF_ISNUMBER_1_IN_2_G2(X, isnumber_1_in_g1(X))
ISNUMBER_1_IN_G1(p_11(X)) -> ISNUMBER_1_IN_G1(X)
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_in_gga3(U, X, A))
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> D_3_IN_GGA3(U, X, A)
D_3_IN_GGA3(div_22(U, V), X, W) -> IF_D_3_IN_4_GGA5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
D_3_IN_GGA3(div_22(U, V), X, W) -> D_3_IN_GGA3(times_22(U, power_22(V, p_11(0_0))), X, W)
D_3_IN_GGA3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_in_g1(V))
D_3_IN_GGA3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> ISNUMBER_1_IN_G1(V)
IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_out_g1(V)) -> IF_D_3_IN_6_GGA5(U, V, X, W, d_3_in_gga3(U, X, W))
IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_out_g1(V)) -> D_3_IN_GGA3(U, X, W)
IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> IF_D_3_IN_3_GGA6(U, V, X, B, A, d_3_in_gga3(V, X, B))
IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> D_3_IN_GGA3(V, X, B)
d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
D_3_IN_GGA3(T, underscore, 0_0) -> IF_D_3_IN_1_GGA3(T, underscore, isnumber_1_in_g1(T))
D_3_IN_GGA3(T, underscore, 0_0) -> ISNUMBER_1_IN_G1(T)
ISNUMBER_1_IN_G1(s_11(X)) -> IF_ISNUMBER_1_IN_1_G2(X, isnumber_1_in_g1(X))
ISNUMBER_1_IN_G1(s_11(X)) -> ISNUMBER_1_IN_G1(X)
ISNUMBER_1_IN_G1(p_11(X)) -> IF_ISNUMBER_1_IN_2_G2(X, isnumber_1_in_g1(X))
ISNUMBER_1_IN_G1(p_11(X)) -> ISNUMBER_1_IN_G1(X)
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_in_gga3(U, X, A))
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> D_3_IN_GGA3(U, X, A)
D_3_IN_GGA3(div_22(U, V), X, W) -> IF_D_3_IN_4_GGA5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
D_3_IN_GGA3(div_22(U, V), X, W) -> D_3_IN_GGA3(times_22(U, power_22(V, p_11(0_0))), X, W)
D_3_IN_GGA3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_in_g1(V))
D_3_IN_GGA3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> ISNUMBER_1_IN_G1(V)
IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_out_g1(V)) -> IF_D_3_IN_6_GGA5(U, V, X, W, d_3_in_gga3(U, X, W))
IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_out_g1(V)) -> D_3_IN_GGA3(U, X, W)
IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> IF_D_3_IN_3_GGA6(U, V, X, B, A, d_3_in_gga3(V, X, B))
IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> D_3_IN_GGA3(V, X, B)
d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
ISNUMBER_1_IN_G1(p_11(X)) -> ISNUMBER_1_IN_G1(X)
ISNUMBER_1_IN_G1(s_11(X)) -> ISNUMBER_1_IN_G1(X)
d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
ISNUMBER_1_IN_G1(p_11(X)) -> ISNUMBER_1_IN_G1(X)
ISNUMBER_1_IN_G1(s_11(X)) -> ISNUMBER_1_IN_G1(X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
ISNUMBER_1_IN_G1(p_11(X)) -> ISNUMBER_1_IN_G1(X)
ISNUMBER_1_IN_G1(s_11(X)) -> ISNUMBER_1_IN_G1(X)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> D_3_IN_GGA3(V, X, B)
D_3_IN_GGA3(div_22(U, V), X, W) -> D_3_IN_GGA3(times_22(U, power_22(V, p_11(0_0))), X, W)
IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_out_g1(V)) -> D_3_IN_GGA3(U, X, W)
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> IF_D_3_IN_2_GGA6(U, V, X, B, A, d_3_in_gga3(U, X, A))
D_3_IN_GGA3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> IF_D_3_IN_5_GGA5(U, V, X, W, isnumber_1_in_g1(V))
D_3_IN_GGA3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> D_3_IN_GGA3(U, X, A)
d_3_in_gga3(X, X, 1_0) -> d_3_out_gga3(X, X, 1_0)
d_3_in_gga3(T, underscore, 0_0) -> if_d_3_in_1_gga3(T, underscore, isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g1(0_0)
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g2(X, isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g2(X, isnumber_1_in_g1(X))
if_isnumber_1_in_2_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(p_11(X))
if_isnumber_1_in_1_g2(X, isnumber_1_out_g1(X)) -> isnumber_1_out_g1(s_11(X))
if_d_3_in_1_gga3(T, underscore, isnumber_1_out_g1(T)) -> d_3_out_gga3(T, underscore, 0_0)
d_3_in_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V))) -> if_d_3_in_2_gga6(U, V, X, B, A, d_3_in_gga3(U, X, A))
d_3_in_gga3(div_22(U, V), X, W) -> if_d_3_in_4_gga5(U, V, X, W, d_3_in_gga3(times_22(U, power_22(V, p_11(0_0))), X, W))
d_3_in_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V))))) -> if_d_3_in_5_gga5(U, V, X, W, isnumber_1_in_g1(V))
if_d_3_in_5_gga5(U, V, X, W, isnumber_1_out_g1(V)) -> if_d_3_in_6_gga5(U, V, X, W, d_3_in_gga3(U, X, W))
if_d_3_in_6_gga5(U, V, X, W, d_3_out_gga3(U, X, W)) -> d_3_out_gga3(power_22(U, V), X, times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga5(U, V, X, W, d_3_out_gga3(times_22(U, power_22(V, p_11(0_0))), X, W)) -> d_3_out_gga3(div_22(U, V), X, W)
if_d_3_in_2_gga6(U, V, X, B, A, d_3_out_gga3(U, X, A)) -> if_d_3_in_3_gga6(U, V, X, B, A, d_3_in_gga3(V, X, B))
if_d_3_in_3_gga6(U, V, X, B, A, d_3_out_gga3(V, X, B)) -> d_3_out_gga3(times_22(U, V), X, +2(times_22(B, U), times_22(A, V)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
IF_D_3_IN_2_GGA4(U, V, X, d_3_out_gga1(A)) -> D_3_IN_GGA2(V, X)
D_3_IN_GGA2(div_22(U, V), X) -> D_3_IN_GGA2(times_22(U, power_22(V, p_11(0_0))), X)
IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_out_g) -> D_3_IN_GGA2(U, X)
D_3_IN_GGA2(times_22(U, V), X) -> IF_D_3_IN_2_GGA4(U, V, X, d_3_in_gga2(U, X))
D_3_IN_GGA2(power_22(U, V), X) -> IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_in_g1(V))
D_3_IN_GGA2(times_22(U, V), X) -> D_3_IN_GGA2(U, X)
d_3_in_gga2(X, X) -> d_3_out_gga1(1_0)
d_3_in_gga2(T, underscore) -> if_d_3_in_1_gga1(isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g1(isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g1(isnumber_1_in_g1(X))
if_isnumber_1_in_2_g1(isnumber_1_out_g) -> isnumber_1_out_g
if_isnumber_1_in_1_g1(isnumber_1_out_g) -> isnumber_1_out_g
if_d_3_in_1_gga1(isnumber_1_out_g) -> d_3_out_gga1(0_0)
d_3_in_gga2(times_22(U, V), X) -> if_d_3_in_2_gga4(U, V, X, d_3_in_gga2(U, X))
d_3_in_gga2(div_22(U, V), X) -> if_d_3_in_4_gga1(d_3_in_gga2(times_22(U, power_22(V, p_11(0_0))), X))
d_3_in_gga2(power_22(U, V), X) -> if_d_3_in_5_gga4(U, V, X, isnumber_1_in_g1(V))
if_d_3_in_5_gga4(U, V, X, isnumber_1_out_g) -> if_d_3_in_6_gga3(U, V, d_3_in_gga2(U, X))
if_d_3_in_6_gga3(U, V, d_3_out_gga1(W)) -> d_3_out_gga1(times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga1(d_3_out_gga1(W)) -> d_3_out_gga1(W)
if_d_3_in_2_gga4(U, V, X, d_3_out_gga1(A)) -> if_d_3_in_3_gga4(U, V, A, d_3_in_gga2(V, X))
if_d_3_in_3_gga4(U, V, A, d_3_out_gga1(B)) -> d_3_out_gga1(+2(times_22(B, U), times_22(A, V)))
d_3_in_gga2(x0, x1)
isnumber_1_in_g1(x0)
if_isnumber_1_in_2_g1(x0)
if_isnumber_1_in_1_g1(x0)
if_d_3_in_1_gga1(x0)
if_d_3_in_5_gga4(x0, x1, x2, x3)
if_d_3_in_6_gga3(x0, x1, x2)
if_d_3_in_4_gga1(x0)
if_d_3_in_2_gga4(x0, x1, x2, x3)
if_d_3_in_3_gga4(x0, x1, x2, x3)
The remaining Dependency Pairs were at least non-strictly be oriented.
D_3_IN_GGA2(div_22(U, V), X) -> D_3_IN_GGA2(times_22(U, power_22(V, p_11(0_0))), X)
With the implicit AFS there is no usable rule.
IF_D_3_IN_2_GGA4(U, V, X, d_3_out_gga1(A)) -> D_3_IN_GGA2(V, X)
IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_out_g) -> D_3_IN_GGA2(U, X)
D_3_IN_GGA2(times_22(U, V), X) -> IF_D_3_IN_2_GGA4(U, V, X, d_3_in_gga2(U, X))
D_3_IN_GGA2(power_22(U, V), X) -> IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_in_g1(V))
D_3_IN_GGA2(times_22(U, V), X) -> D_3_IN_GGA2(U, X)
Used ordering: POLO with Polynomial interpretation:
POL(D_3_IN_GGA2(x1, x2)) = x1
POL(0_0) = 0
POL(if_isnumber_1_in_1_g1(x1)) = 0
POL(if_d_3_in_3_gga4(x1, x2, x3, x4)) = 0
POL(power_22(x1, x2)) = x1
POL(if_d_3_in_1_gga1(x1)) = 0
POL(IF_D_3_IN_5_GGA4(x1, x2, x3, x4)) = x1
POL(times_22(x1, x2)) = x1 + x2
POL(p_11(x1)) = 0
POL(if_isnumber_1_in_2_g1(x1)) = 0
POL(d_3_in_gga2(x1, x2)) = 0
POL(if_d_3_in_6_gga3(x1, x2, x3)) = 0
POL(isnumber_1_out_g) = 0
POL(d_3_out_gga1(x1)) = 0
POL(isnumber_1_in_g1(x1)) = 0
POL(if_d_3_in_2_gga4(x1, x2, x3, x4)) = 0
POL(+2(x1, x2)) = 0
POL(if_d_3_in_5_gga4(x1, x2, x3, x4)) = 0
POL(IF_D_3_IN_2_GGA4(x1, x2, x3, x4)) = x2
POL(if_d_3_in_4_gga1(x1)) = 0
POL(s_11(x1)) = 0
POL(1_0) = 0
POL(div_22(x1, x2)) = 1 + x1 + x2
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ QDPSizeChangeProof
IF_D_3_IN_2_GGA4(U, V, X, d_3_out_gga1(A)) -> D_3_IN_GGA2(V, X)
IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_out_g) -> D_3_IN_GGA2(U, X)
D_3_IN_GGA2(times_22(U, V), X) -> IF_D_3_IN_2_GGA4(U, V, X, d_3_in_gga2(U, X))
D_3_IN_GGA2(power_22(U, V), X) -> IF_D_3_IN_5_GGA4(U, V, X, isnumber_1_in_g1(V))
D_3_IN_GGA2(times_22(U, V), X) -> D_3_IN_GGA2(U, X)
d_3_in_gga2(X, X) -> d_3_out_gga1(1_0)
d_3_in_gga2(T, underscore) -> if_d_3_in_1_gga1(isnumber_1_in_g1(T))
isnumber_1_in_g1(0_0) -> isnumber_1_out_g
isnumber_1_in_g1(s_11(X)) -> if_isnumber_1_in_1_g1(isnumber_1_in_g1(X))
isnumber_1_in_g1(p_11(X)) -> if_isnumber_1_in_2_g1(isnumber_1_in_g1(X))
if_isnumber_1_in_2_g1(isnumber_1_out_g) -> isnumber_1_out_g
if_isnumber_1_in_1_g1(isnumber_1_out_g) -> isnumber_1_out_g
if_d_3_in_1_gga1(isnumber_1_out_g) -> d_3_out_gga1(0_0)
d_3_in_gga2(times_22(U, V), X) -> if_d_3_in_2_gga4(U, V, X, d_3_in_gga2(U, X))
d_3_in_gga2(div_22(U, V), X) -> if_d_3_in_4_gga1(d_3_in_gga2(times_22(U, power_22(V, p_11(0_0))), X))
d_3_in_gga2(power_22(U, V), X) -> if_d_3_in_5_gga4(U, V, X, isnumber_1_in_g1(V))
if_d_3_in_5_gga4(U, V, X, isnumber_1_out_g) -> if_d_3_in_6_gga3(U, V, d_3_in_gga2(U, X))
if_d_3_in_6_gga3(U, V, d_3_out_gga1(W)) -> d_3_out_gga1(times_22(V, times_22(W, power_22(U, p_11(V)))))
if_d_3_in_4_gga1(d_3_out_gga1(W)) -> d_3_out_gga1(W)
if_d_3_in_2_gga4(U, V, X, d_3_out_gga1(A)) -> if_d_3_in_3_gga4(U, V, A, d_3_in_gga2(V, X))
if_d_3_in_3_gga4(U, V, A, d_3_out_gga1(B)) -> d_3_out_gga1(+2(times_22(B, U), times_22(A, V)))
d_3_in_gga2(x0, x1)
isnumber_1_in_g1(x0)
if_isnumber_1_in_2_g1(x0)
if_isnumber_1_in_1_g1(x0)
if_d_3_in_1_gga1(x0)
if_d_3_in_5_gga4(x0, x1, x2, x3)
if_d_3_in_6_gga3(x0, x1, x2)
if_d_3_in_4_gga1(x0)
if_d_3_in_2_gga4(x0, x1, x2, x3)
if_d_3_in_3_gga4(x0, x1, x2, x3)
From the DPs we obtained the following set of size-change graphs: