Left Termination of the query pattern goal(b,f,f) w.r.t. the given Prolog program could successfully be proven:



PROLOG
  ↳ PrologToPiTRSProof

goal3(A, B, C) :- s2t2(A, T), tapplast3(T, B, C).
tapplast3(L, X, Last) :- tappend3(L, node3(nil0, X, nil0), LX), tlast2(Last, LX).
tlast2(X, node3(nil0, X, nil0)).
tlast2(X, node3(L, H, R)) :- tlast2(X, L).
tlast2(X, node3(L, H, R)) :- tlast2(X, R).
tappend3(nil0, T, T).
tappend3(node3(nil0, X, T2), T1, node3(T1, X, T2)).
tappend3(node3(T1, X, nil0), T2, node3(T1, X, T2)).
tappend3(node3(T1, X, T2), T3, node3(U, X, T2)) :- tappend3(T1, T3, U).
tappend3(node3(T1, X, T2), T3, node3(T1, X, U)) :- tappend3(T2, T3, U).
s2t2(s1(X), node3(T, Y, T)) :- s2t2(X, T).
s2t2(s1(X), node3(nil0, Y, T)) :- s2t2(X, T).
s2t2(s1(X), node3(T, Y, nil0)) :- s2t2(X, T).
s2t2(s1(X), node3(nil0, Y, nil0)).
s2t2(00, nil0).


With regard to the inferred argument filtering the predicates were used in the following modes:
goal3: (b,f,f)
s2t2: (b,f)
tapplast3: (b,f,f)
tappend3: (b,b,f)
tlast2: (f,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:


goal_3_in_gaa3(A, B, C) -> if_goal_3_in_1_gaa4(A, B, C, s2t_2_in_ga2(A, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, T)) -> if_s2t_2_in_1_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, T)) -> if_s2t_2_in_2_ga4(X, Y, T, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, nil_0)) -> if_s2t_2_in_3_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, nil_0)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, nil_0))
s2t_2_in_ga2(0_0, nil_0) -> s2t_2_out_ga2(0_0, nil_0)
if_s2t_2_in_3_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, nil_0))
if_s2t_2_in_2_ga4(X, Y, T, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, T))
if_s2t_2_in_1_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, T))
if_goal_3_in_1_gaa4(A, B, C, s2t_2_out_ga2(A, T)) -> if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_in_gaa3(T, B, C))
tapplast_3_in_gaa3(L, X, Last) -> if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_in_gga3(L, node_33(nil_0, X, nil_0), LX))
tappend_3_in_gga3(nil_0, T, T) -> tappend_3_out_gga3(nil_0, T, T)
tappend_3_in_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T1, T3, U))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T2, T3, U))
if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T2, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U))
if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T1, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2))
if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_out_gga3(L, node_33(nil_0, X, nil_0), LX)) -> if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_in_ag2(Last, LX))
tlast_2_in_ag2(X, node_33(nil_0, X, nil_0)) -> tlast_2_out_ag2(X, node_33(nil_0, X, nil_0))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_in_ag2(X, L))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_in_ag2(X, R))
if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_out_ag2(X, R)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_out_ag2(X, L)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_out_ag2(Last, LX)) -> tapplast_3_out_gaa3(L, X, Last)
if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_out_gaa3(T, B, C)) -> goal_3_out_gaa3(A, B, C)

The argument filtering Pi contains the following mapping:
goal_3_in_gaa3(x1, x2, x3)  =  goal_3_in_gaa1(x1)
node_33(x1, x2, x3)  =  node_32(x1, x3)
nil_0  =  nil_0
s_11(x1)  =  s_11(x1)
0_0  =  0_0
if_goal_3_in_1_gaa4(x1, x2, x3, x4)  =  if_goal_3_in_1_gaa1(x4)
s2t_2_in_ga2(x1, x2)  =  s2t_2_in_ga1(x1)
if_s2t_2_in_1_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_1_ga1(x4)
if_s2t_2_in_2_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_2_ga1(x4)
if_s2t_2_in_3_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_3_ga1(x4)
s2t_2_out_ga2(x1, x2)  =  s2t_2_out_ga1(x2)
if_goal_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_goal_3_in_2_gaa1(x5)
tapplast_3_in_gaa3(x1, x2, x3)  =  tapplast_3_in_gaa1(x1)
if_tapplast_3_in_1_gaa4(x1, x2, x3, x4)  =  if_tapplast_3_in_1_gaa1(x4)
tappend_3_in_gga3(x1, x2, x3)  =  tappend_3_in_gga2(x1, x2)
tappend_3_out_gga3(x1, x2, x3)  =  tappend_3_out_gga1(x3)
if_tappend_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_1_gga2(x3, x6)
if_tappend_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_2_gga2(x1, x6)
if_tapplast_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_tapplast_3_in_2_gaa1(x5)
tlast_2_in_ag2(x1, x2)  =  tlast_2_in_ag1(x2)
tlast_2_out_ag2(x1, x2)  =  tlast_2_out_ag
if_tlast_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_1_ag1(x5)
if_tlast_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_2_ag1(x5)
tapplast_3_out_gaa3(x1, x2, x3)  =  tapplast_3_out_gaa
goal_3_out_gaa3(x1, x2, x3)  =  goal_3_out_gaa

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG



↳ PROLOG
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

goal_3_in_gaa3(A, B, C) -> if_goal_3_in_1_gaa4(A, B, C, s2t_2_in_ga2(A, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, T)) -> if_s2t_2_in_1_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, T)) -> if_s2t_2_in_2_ga4(X, Y, T, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, nil_0)) -> if_s2t_2_in_3_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, nil_0)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, nil_0))
s2t_2_in_ga2(0_0, nil_0) -> s2t_2_out_ga2(0_0, nil_0)
if_s2t_2_in_3_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, nil_0))
if_s2t_2_in_2_ga4(X, Y, T, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, T))
if_s2t_2_in_1_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, T))
if_goal_3_in_1_gaa4(A, B, C, s2t_2_out_ga2(A, T)) -> if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_in_gaa3(T, B, C))
tapplast_3_in_gaa3(L, X, Last) -> if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_in_gga3(L, node_33(nil_0, X, nil_0), LX))
tappend_3_in_gga3(nil_0, T, T) -> tappend_3_out_gga3(nil_0, T, T)
tappend_3_in_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T1, T3, U))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T2, T3, U))
if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T2, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U))
if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T1, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2))
if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_out_gga3(L, node_33(nil_0, X, nil_0), LX)) -> if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_in_ag2(Last, LX))
tlast_2_in_ag2(X, node_33(nil_0, X, nil_0)) -> tlast_2_out_ag2(X, node_33(nil_0, X, nil_0))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_in_ag2(X, L))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_in_ag2(X, R))
if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_out_ag2(X, R)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_out_ag2(X, L)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_out_ag2(Last, LX)) -> tapplast_3_out_gaa3(L, X, Last)
if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_out_gaa3(T, B, C)) -> goal_3_out_gaa3(A, B, C)

The argument filtering Pi contains the following mapping:
goal_3_in_gaa3(x1, x2, x3)  =  goal_3_in_gaa1(x1)
node_33(x1, x2, x3)  =  node_32(x1, x3)
nil_0  =  nil_0
s_11(x1)  =  s_11(x1)
0_0  =  0_0
if_goal_3_in_1_gaa4(x1, x2, x3, x4)  =  if_goal_3_in_1_gaa1(x4)
s2t_2_in_ga2(x1, x2)  =  s2t_2_in_ga1(x1)
if_s2t_2_in_1_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_1_ga1(x4)
if_s2t_2_in_2_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_2_ga1(x4)
if_s2t_2_in_3_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_3_ga1(x4)
s2t_2_out_ga2(x1, x2)  =  s2t_2_out_ga1(x2)
if_goal_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_goal_3_in_2_gaa1(x5)
tapplast_3_in_gaa3(x1, x2, x3)  =  tapplast_3_in_gaa1(x1)
if_tapplast_3_in_1_gaa4(x1, x2, x3, x4)  =  if_tapplast_3_in_1_gaa1(x4)
tappend_3_in_gga3(x1, x2, x3)  =  tappend_3_in_gga2(x1, x2)
tappend_3_out_gga3(x1, x2, x3)  =  tappend_3_out_gga1(x3)
if_tappend_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_1_gga2(x3, x6)
if_tappend_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_2_gga2(x1, x6)
if_tapplast_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_tapplast_3_in_2_gaa1(x5)
tlast_2_in_ag2(x1, x2)  =  tlast_2_in_ag1(x2)
tlast_2_out_ag2(x1, x2)  =  tlast_2_out_ag
if_tlast_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_1_ag1(x5)
if_tlast_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_2_ag1(x5)
tapplast_3_out_gaa3(x1, x2, x3)  =  tapplast_3_out_gaa
goal_3_out_gaa3(x1, x2, x3)  =  goal_3_out_gaa


Pi DP problem:
The TRS P consists of the following rules:

GOAL_3_IN_GAA3(A, B, C) -> IF_GOAL_3_IN_1_GAA4(A, B, C, s2t_2_in_ga2(A, T))
GOAL_3_IN_GAA3(A, B, C) -> S2T_2_IN_GA2(A, T)
S2T_2_IN_GA2(s_11(X), node_33(T, Y, T)) -> IF_S2T_2_IN_1_GA4(X, T, Y, s2t_2_in_ga2(X, T))
S2T_2_IN_GA2(s_11(X), node_33(T, Y, T)) -> S2T_2_IN_GA2(X, T)
S2T_2_IN_GA2(s_11(X), node_33(nil_0, Y, T)) -> IF_S2T_2_IN_2_GA4(X, Y, T, s2t_2_in_ga2(X, T))
S2T_2_IN_GA2(s_11(X), node_33(nil_0, Y, T)) -> S2T_2_IN_GA2(X, T)
S2T_2_IN_GA2(s_11(X), node_33(T, Y, nil_0)) -> IF_S2T_2_IN_3_GA4(X, T, Y, s2t_2_in_ga2(X, T))
S2T_2_IN_GA2(s_11(X), node_33(T, Y, nil_0)) -> S2T_2_IN_GA2(X, T)
IF_GOAL_3_IN_1_GAA4(A, B, C, s2t_2_out_ga2(A, T)) -> IF_GOAL_3_IN_2_GAA5(A, B, C, T, tapplast_3_in_gaa3(T, B, C))
IF_GOAL_3_IN_1_GAA4(A, B, C, s2t_2_out_ga2(A, T)) -> TAPPLAST_3_IN_GAA3(T, B, C)
TAPPLAST_3_IN_GAA3(L, X, Last) -> IF_TAPPLAST_3_IN_1_GAA4(L, X, Last, tappend_3_in_gga3(L, node_33(nil_0, X, nil_0), LX))
TAPPLAST_3_IN_GAA3(L, X, Last) -> TAPPEND_3_IN_GGA3(L, node_33(nil_0, X, nil_0), LX)
TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> IF_TAPPEND_3_IN_1_GGA6(T1, X, T2, T3, U, tappend_3_in_gga3(T1, T3, U))
TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> TAPPEND_3_IN_GGA3(T1, T3, U)
TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> IF_TAPPEND_3_IN_2_GGA6(T1, X, T2, T3, U, tappend_3_in_gga3(T2, T3, U))
TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> TAPPEND_3_IN_GGA3(T2, T3, U)
IF_TAPPLAST_3_IN_1_GAA4(L, X, Last, tappend_3_out_gga3(L, node_33(nil_0, X, nil_0), LX)) -> IF_TAPPLAST_3_IN_2_GAA5(L, X, Last, LX, tlast_2_in_ag2(Last, LX))
IF_TAPPLAST_3_IN_1_GAA4(L, X, Last, tappend_3_out_gga3(L, node_33(nil_0, X, nil_0), LX)) -> TLAST_2_IN_AG2(Last, LX)
TLAST_2_IN_AG2(X, node_33(L, H, R)) -> IF_TLAST_2_IN_1_AG5(X, L, H, R, tlast_2_in_ag2(X, L))
TLAST_2_IN_AG2(X, node_33(L, H, R)) -> TLAST_2_IN_AG2(X, L)
TLAST_2_IN_AG2(X, node_33(L, H, R)) -> IF_TLAST_2_IN_2_AG5(X, L, H, R, tlast_2_in_ag2(X, R))
TLAST_2_IN_AG2(X, node_33(L, H, R)) -> TLAST_2_IN_AG2(X, R)

The TRS R consists of the following rules:

goal_3_in_gaa3(A, B, C) -> if_goal_3_in_1_gaa4(A, B, C, s2t_2_in_ga2(A, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, T)) -> if_s2t_2_in_1_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, T)) -> if_s2t_2_in_2_ga4(X, Y, T, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, nil_0)) -> if_s2t_2_in_3_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, nil_0)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, nil_0))
s2t_2_in_ga2(0_0, nil_0) -> s2t_2_out_ga2(0_0, nil_0)
if_s2t_2_in_3_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, nil_0))
if_s2t_2_in_2_ga4(X, Y, T, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, T))
if_s2t_2_in_1_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, T))
if_goal_3_in_1_gaa4(A, B, C, s2t_2_out_ga2(A, T)) -> if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_in_gaa3(T, B, C))
tapplast_3_in_gaa3(L, X, Last) -> if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_in_gga3(L, node_33(nil_0, X, nil_0), LX))
tappend_3_in_gga3(nil_0, T, T) -> tappend_3_out_gga3(nil_0, T, T)
tappend_3_in_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T1, T3, U))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T2, T3, U))
if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T2, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U))
if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T1, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2))
if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_out_gga3(L, node_33(nil_0, X, nil_0), LX)) -> if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_in_ag2(Last, LX))
tlast_2_in_ag2(X, node_33(nil_0, X, nil_0)) -> tlast_2_out_ag2(X, node_33(nil_0, X, nil_0))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_in_ag2(X, L))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_in_ag2(X, R))
if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_out_ag2(X, R)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_out_ag2(X, L)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_out_ag2(Last, LX)) -> tapplast_3_out_gaa3(L, X, Last)
if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_out_gaa3(T, B, C)) -> goal_3_out_gaa3(A, B, C)

The argument filtering Pi contains the following mapping:
goal_3_in_gaa3(x1, x2, x3)  =  goal_3_in_gaa1(x1)
node_33(x1, x2, x3)  =  node_32(x1, x3)
nil_0  =  nil_0
s_11(x1)  =  s_11(x1)
0_0  =  0_0
if_goal_3_in_1_gaa4(x1, x2, x3, x4)  =  if_goal_3_in_1_gaa1(x4)
s2t_2_in_ga2(x1, x2)  =  s2t_2_in_ga1(x1)
if_s2t_2_in_1_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_1_ga1(x4)
if_s2t_2_in_2_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_2_ga1(x4)
if_s2t_2_in_3_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_3_ga1(x4)
s2t_2_out_ga2(x1, x2)  =  s2t_2_out_ga1(x2)
if_goal_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_goal_3_in_2_gaa1(x5)
tapplast_3_in_gaa3(x1, x2, x3)  =  tapplast_3_in_gaa1(x1)
if_tapplast_3_in_1_gaa4(x1, x2, x3, x4)  =  if_tapplast_3_in_1_gaa1(x4)
tappend_3_in_gga3(x1, x2, x3)  =  tappend_3_in_gga2(x1, x2)
tappend_3_out_gga3(x1, x2, x3)  =  tappend_3_out_gga1(x3)
if_tappend_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_1_gga2(x3, x6)
if_tappend_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_2_gga2(x1, x6)
if_tapplast_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_tapplast_3_in_2_gaa1(x5)
tlast_2_in_ag2(x1, x2)  =  tlast_2_in_ag1(x2)
tlast_2_out_ag2(x1, x2)  =  tlast_2_out_ag
if_tlast_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_1_ag1(x5)
if_tlast_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_2_ag1(x5)
tapplast_3_out_gaa3(x1, x2, x3)  =  tapplast_3_out_gaa
goal_3_out_gaa3(x1, x2, x3)  =  goal_3_out_gaa
S2T_2_IN_GA2(x1, x2)  =  S2T_2_IN_GA1(x1)
IF_S2T_2_IN_3_GA4(x1, x2, x3, x4)  =  IF_S2T_2_IN_3_GA1(x4)
IF_TLAST_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_TLAST_2_IN_1_AG1(x5)
GOAL_3_IN_GAA3(x1, x2, x3)  =  GOAL_3_IN_GAA1(x1)
IF_GOAL_3_IN_2_GAA5(x1, x2, x3, x4, x5)  =  IF_GOAL_3_IN_2_GAA1(x5)
TAPPLAST_3_IN_GAA3(x1, x2, x3)  =  TAPPLAST_3_IN_GAA1(x1)
IF_S2T_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_S2T_2_IN_1_GA1(x4)
IF_TAPPEND_3_IN_1_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_TAPPEND_3_IN_1_GGA2(x3, x6)
IF_GOAL_3_IN_1_GAA4(x1, x2, x3, x4)  =  IF_GOAL_3_IN_1_GAA1(x4)
TAPPEND_3_IN_GGA3(x1, x2, x3)  =  TAPPEND_3_IN_GGA2(x1, x2)
IF_TAPPLAST_3_IN_1_GAA4(x1, x2, x3, x4)  =  IF_TAPPLAST_3_IN_1_GAA1(x4)
IF_TAPPEND_3_IN_2_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_TAPPEND_3_IN_2_GGA2(x1, x6)
IF_TAPPLAST_3_IN_2_GAA5(x1, x2, x3, x4, x5)  =  IF_TAPPLAST_3_IN_2_GAA1(x5)
IF_TLAST_2_IN_2_AG5(x1, x2, x3, x4, x5)  =  IF_TLAST_2_IN_2_AG1(x5)
TLAST_2_IN_AG2(x1, x2)  =  TLAST_2_IN_AG1(x2)
IF_S2T_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_S2T_2_IN_2_GA1(x4)

We have to consider all (P,R,Pi)-chains

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

GOAL_3_IN_GAA3(A, B, C) -> IF_GOAL_3_IN_1_GAA4(A, B, C, s2t_2_in_ga2(A, T))
GOAL_3_IN_GAA3(A, B, C) -> S2T_2_IN_GA2(A, T)
S2T_2_IN_GA2(s_11(X), node_33(T, Y, T)) -> IF_S2T_2_IN_1_GA4(X, T, Y, s2t_2_in_ga2(X, T))
S2T_2_IN_GA2(s_11(X), node_33(T, Y, T)) -> S2T_2_IN_GA2(X, T)
S2T_2_IN_GA2(s_11(X), node_33(nil_0, Y, T)) -> IF_S2T_2_IN_2_GA4(X, Y, T, s2t_2_in_ga2(X, T))
S2T_2_IN_GA2(s_11(X), node_33(nil_0, Y, T)) -> S2T_2_IN_GA2(X, T)
S2T_2_IN_GA2(s_11(X), node_33(T, Y, nil_0)) -> IF_S2T_2_IN_3_GA4(X, T, Y, s2t_2_in_ga2(X, T))
S2T_2_IN_GA2(s_11(X), node_33(T, Y, nil_0)) -> S2T_2_IN_GA2(X, T)
IF_GOAL_3_IN_1_GAA4(A, B, C, s2t_2_out_ga2(A, T)) -> IF_GOAL_3_IN_2_GAA5(A, B, C, T, tapplast_3_in_gaa3(T, B, C))
IF_GOAL_3_IN_1_GAA4(A, B, C, s2t_2_out_ga2(A, T)) -> TAPPLAST_3_IN_GAA3(T, B, C)
TAPPLAST_3_IN_GAA3(L, X, Last) -> IF_TAPPLAST_3_IN_1_GAA4(L, X, Last, tappend_3_in_gga3(L, node_33(nil_0, X, nil_0), LX))
TAPPLAST_3_IN_GAA3(L, X, Last) -> TAPPEND_3_IN_GGA3(L, node_33(nil_0, X, nil_0), LX)
TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> IF_TAPPEND_3_IN_1_GGA6(T1, X, T2, T3, U, tappend_3_in_gga3(T1, T3, U))
TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> TAPPEND_3_IN_GGA3(T1, T3, U)
TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> IF_TAPPEND_3_IN_2_GGA6(T1, X, T2, T3, U, tappend_3_in_gga3(T2, T3, U))
TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> TAPPEND_3_IN_GGA3(T2, T3, U)
IF_TAPPLAST_3_IN_1_GAA4(L, X, Last, tappend_3_out_gga3(L, node_33(nil_0, X, nil_0), LX)) -> IF_TAPPLAST_3_IN_2_GAA5(L, X, Last, LX, tlast_2_in_ag2(Last, LX))
IF_TAPPLAST_3_IN_1_GAA4(L, X, Last, tappend_3_out_gga3(L, node_33(nil_0, X, nil_0), LX)) -> TLAST_2_IN_AG2(Last, LX)
TLAST_2_IN_AG2(X, node_33(L, H, R)) -> IF_TLAST_2_IN_1_AG5(X, L, H, R, tlast_2_in_ag2(X, L))
TLAST_2_IN_AG2(X, node_33(L, H, R)) -> TLAST_2_IN_AG2(X, L)
TLAST_2_IN_AG2(X, node_33(L, H, R)) -> IF_TLAST_2_IN_2_AG5(X, L, H, R, tlast_2_in_ag2(X, R))
TLAST_2_IN_AG2(X, node_33(L, H, R)) -> TLAST_2_IN_AG2(X, R)

The TRS R consists of the following rules:

goal_3_in_gaa3(A, B, C) -> if_goal_3_in_1_gaa4(A, B, C, s2t_2_in_ga2(A, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, T)) -> if_s2t_2_in_1_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, T)) -> if_s2t_2_in_2_ga4(X, Y, T, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, nil_0)) -> if_s2t_2_in_3_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, nil_0)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, nil_0))
s2t_2_in_ga2(0_0, nil_0) -> s2t_2_out_ga2(0_0, nil_0)
if_s2t_2_in_3_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, nil_0))
if_s2t_2_in_2_ga4(X, Y, T, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, T))
if_s2t_2_in_1_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, T))
if_goal_3_in_1_gaa4(A, B, C, s2t_2_out_ga2(A, T)) -> if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_in_gaa3(T, B, C))
tapplast_3_in_gaa3(L, X, Last) -> if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_in_gga3(L, node_33(nil_0, X, nil_0), LX))
tappend_3_in_gga3(nil_0, T, T) -> tappend_3_out_gga3(nil_0, T, T)
tappend_3_in_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T1, T3, U))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T2, T3, U))
if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T2, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U))
if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T1, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2))
if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_out_gga3(L, node_33(nil_0, X, nil_0), LX)) -> if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_in_ag2(Last, LX))
tlast_2_in_ag2(X, node_33(nil_0, X, nil_0)) -> tlast_2_out_ag2(X, node_33(nil_0, X, nil_0))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_in_ag2(X, L))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_in_ag2(X, R))
if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_out_ag2(X, R)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_out_ag2(X, L)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_out_ag2(Last, LX)) -> tapplast_3_out_gaa3(L, X, Last)
if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_out_gaa3(T, B, C)) -> goal_3_out_gaa3(A, B, C)

The argument filtering Pi contains the following mapping:
goal_3_in_gaa3(x1, x2, x3)  =  goal_3_in_gaa1(x1)
node_33(x1, x2, x3)  =  node_32(x1, x3)
nil_0  =  nil_0
s_11(x1)  =  s_11(x1)
0_0  =  0_0
if_goal_3_in_1_gaa4(x1, x2, x3, x4)  =  if_goal_3_in_1_gaa1(x4)
s2t_2_in_ga2(x1, x2)  =  s2t_2_in_ga1(x1)
if_s2t_2_in_1_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_1_ga1(x4)
if_s2t_2_in_2_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_2_ga1(x4)
if_s2t_2_in_3_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_3_ga1(x4)
s2t_2_out_ga2(x1, x2)  =  s2t_2_out_ga1(x2)
if_goal_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_goal_3_in_2_gaa1(x5)
tapplast_3_in_gaa3(x1, x2, x3)  =  tapplast_3_in_gaa1(x1)
if_tapplast_3_in_1_gaa4(x1, x2, x3, x4)  =  if_tapplast_3_in_1_gaa1(x4)
tappend_3_in_gga3(x1, x2, x3)  =  tappend_3_in_gga2(x1, x2)
tappend_3_out_gga3(x1, x2, x3)  =  tappend_3_out_gga1(x3)
if_tappend_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_1_gga2(x3, x6)
if_tappend_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_2_gga2(x1, x6)
if_tapplast_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_tapplast_3_in_2_gaa1(x5)
tlast_2_in_ag2(x1, x2)  =  tlast_2_in_ag1(x2)
tlast_2_out_ag2(x1, x2)  =  tlast_2_out_ag
if_tlast_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_1_ag1(x5)
if_tlast_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_2_ag1(x5)
tapplast_3_out_gaa3(x1, x2, x3)  =  tapplast_3_out_gaa
goal_3_out_gaa3(x1, x2, x3)  =  goal_3_out_gaa
S2T_2_IN_GA2(x1, x2)  =  S2T_2_IN_GA1(x1)
IF_S2T_2_IN_3_GA4(x1, x2, x3, x4)  =  IF_S2T_2_IN_3_GA1(x4)
IF_TLAST_2_IN_1_AG5(x1, x2, x3, x4, x5)  =  IF_TLAST_2_IN_1_AG1(x5)
GOAL_3_IN_GAA3(x1, x2, x3)  =  GOAL_3_IN_GAA1(x1)
IF_GOAL_3_IN_2_GAA5(x1, x2, x3, x4, x5)  =  IF_GOAL_3_IN_2_GAA1(x5)
TAPPLAST_3_IN_GAA3(x1, x2, x3)  =  TAPPLAST_3_IN_GAA1(x1)
IF_S2T_2_IN_1_GA4(x1, x2, x3, x4)  =  IF_S2T_2_IN_1_GA1(x4)
IF_TAPPEND_3_IN_1_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_TAPPEND_3_IN_1_GGA2(x3, x6)
IF_GOAL_3_IN_1_GAA4(x1, x2, x3, x4)  =  IF_GOAL_3_IN_1_GAA1(x4)
TAPPEND_3_IN_GGA3(x1, x2, x3)  =  TAPPEND_3_IN_GGA2(x1, x2)
IF_TAPPLAST_3_IN_1_GAA4(x1, x2, x3, x4)  =  IF_TAPPLAST_3_IN_1_GAA1(x4)
IF_TAPPEND_3_IN_2_GGA6(x1, x2, x3, x4, x5, x6)  =  IF_TAPPEND_3_IN_2_GGA2(x1, x6)
IF_TAPPLAST_3_IN_2_GAA5(x1, x2, x3, x4, x5)  =  IF_TAPPLAST_3_IN_2_GAA1(x5)
IF_TLAST_2_IN_2_AG5(x1, x2, x3, x4, x5)  =  IF_TLAST_2_IN_2_AG1(x5)
TLAST_2_IN_AG2(x1, x2)  =  TLAST_2_IN_AG1(x2)
IF_S2T_2_IN_2_GA4(x1, x2, x3, x4)  =  IF_S2T_2_IN_2_GA1(x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph contains 3 SCCs with 15 less nodes.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

TLAST_2_IN_AG2(X, node_33(L, H, R)) -> TLAST_2_IN_AG2(X, R)
TLAST_2_IN_AG2(X, node_33(L, H, R)) -> TLAST_2_IN_AG2(X, L)

The TRS R consists of the following rules:

goal_3_in_gaa3(A, B, C) -> if_goal_3_in_1_gaa4(A, B, C, s2t_2_in_ga2(A, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, T)) -> if_s2t_2_in_1_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, T)) -> if_s2t_2_in_2_ga4(X, Y, T, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, nil_0)) -> if_s2t_2_in_3_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, nil_0)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, nil_0))
s2t_2_in_ga2(0_0, nil_0) -> s2t_2_out_ga2(0_0, nil_0)
if_s2t_2_in_3_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, nil_0))
if_s2t_2_in_2_ga4(X, Y, T, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, T))
if_s2t_2_in_1_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, T))
if_goal_3_in_1_gaa4(A, B, C, s2t_2_out_ga2(A, T)) -> if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_in_gaa3(T, B, C))
tapplast_3_in_gaa3(L, X, Last) -> if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_in_gga3(L, node_33(nil_0, X, nil_0), LX))
tappend_3_in_gga3(nil_0, T, T) -> tappend_3_out_gga3(nil_0, T, T)
tappend_3_in_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T1, T3, U))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T2, T3, U))
if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T2, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U))
if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T1, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2))
if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_out_gga3(L, node_33(nil_0, X, nil_0), LX)) -> if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_in_ag2(Last, LX))
tlast_2_in_ag2(X, node_33(nil_0, X, nil_0)) -> tlast_2_out_ag2(X, node_33(nil_0, X, nil_0))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_in_ag2(X, L))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_in_ag2(X, R))
if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_out_ag2(X, R)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_out_ag2(X, L)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_out_ag2(Last, LX)) -> tapplast_3_out_gaa3(L, X, Last)
if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_out_gaa3(T, B, C)) -> goal_3_out_gaa3(A, B, C)

The argument filtering Pi contains the following mapping:
goal_3_in_gaa3(x1, x2, x3)  =  goal_3_in_gaa1(x1)
node_33(x1, x2, x3)  =  node_32(x1, x3)
nil_0  =  nil_0
s_11(x1)  =  s_11(x1)
0_0  =  0_0
if_goal_3_in_1_gaa4(x1, x2, x3, x4)  =  if_goal_3_in_1_gaa1(x4)
s2t_2_in_ga2(x1, x2)  =  s2t_2_in_ga1(x1)
if_s2t_2_in_1_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_1_ga1(x4)
if_s2t_2_in_2_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_2_ga1(x4)
if_s2t_2_in_3_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_3_ga1(x4)
s2t_2_out_ga2(x1, x2)  =  s2t_2_out_ga1(x2)
if_goal_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_goal_3_in_2_gaa1(x5)
tapplast_3_in_gaa3(x1, x2, x3)  =  tapplast_3_in_gaa1(x1)
if_tapplast_3_in_1_gaa4(x1, x2, x3, x4)  =  if_tapplast_3_in_1_gaa1(x4)
tappend_3_in_gga3(x1, x2, x3)  =  tappend_3_in_gga2(x1, x2)
tappend_3_out_gga3(x1, x2, x3)  =  tappend_3_out_gga1(x3)
if_tappend_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_1_gga2(x3, x6)
if_tappend_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_2_gga2(x1, x6)
if_tapplast_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_tapplast_3_in_2_gaa1(x5)
tlast_2_in_ag2(x1, x2)  =  tlast_2_in_ag1(x2)
tlast_2_out_ag2(x1, x2)  =  tlast_2_out_ag
if_tlast_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_1_ag1(x5)
if_tlast_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_2_ag1(x5)
tapplast_3_out_gaa3(x1, x2, x3)  =  tapplast_3_out_gaa
goal_3_out_gaa3(x1, x2, x3)  =  goal_3_out_gaa
TLAST_2_IN_AG2(x1, x2)  =  TLAST_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

TLAST_2_IN_AG2(X, node_33(L, H, R)) -> TLAST_2_IN_AG2(X, R)
TLAST_2_IN_AG2(X, node_33(L, H, R)) -> TLAST_2_IN_AG2(X, L)

R is empty.
The argument filtering Pi contains the following mapping:
node_33(x1, x2, x3)  =  node_32(x1, x3)
TLAST_2_IN_AG2(x1, x2)  =  TLAST_2_IN_AG1(x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

TLAST_2_IN_AG1(node_32(L, R)) -> TLAST_2_IN_AG1(R)
TLAST_2_IN_AG1(node_32(L, R)) -> TLAST_2_IN_AG1(L)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {TLAST_2_IN_AG1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> TAPPEND_3_IN_GGA3(T2, T3, U)
TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> TAPPEND_3_IN_GGA3(T1, T3, U)

The TRS R consists of the following rules:

goal_3_in_gaa3(A, B, C) -> if_goal_3_in_1_gaa4(A, B, C, s2t_2_in_ga2(A, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, T)) -> if_s2t_2_in_1_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, T)) -> if_s2t_2_in_2_ga4(X, Y, T, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, nil_0)) -> if_s2t_2_in_3_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, nil_0)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, nil_0))
s2t_2_in_ga2(0_0, nil_0) -> s2t_2_out_ga2(0_0, nil_0)
if_s2t_2_in_3_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, nil_0))
if_s2t_2_in_2_ga4(X, Y, T, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, T))
if_s2t_2_in_1_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, T))
if_goal_3_in_1_gaa4(A, B, C, s2t_2_out_ga2(A, T)) -> if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_in_gaa3(T, B, C))
tapplast_3_in_gaa3(L, X, Last) -> if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_in_gga3(L, node_33(nil_0, X, nil_0), LX))
tappend_3_in_gga3(nil_0, T, T) -> tappend_3_out_gga3(nil_0, T, T)
tappend_3_in_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T1, T3, U))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T2, T3, U))
if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T2, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U))
if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T1, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2))
if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_out_gga3(L, node_33(nil_0, X, nil_0), LX)) -> if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_in_ag2(Last, LX))
tlast_2_in_ag2(X, node_33(nil_0, X, nil_0)) -> tlast_2_out_ag2(X, node_33(nil_0, X, nil_0))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_in_ag2(X, L))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_in_ag2(X, R))
if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_out_ag2(X, R)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_out_ag2(X, L)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_out_ag2(Last, LX)) -> tapplast_3_out_gaa3(L, X, Last)
if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_out_gaa3(T, B, C)) -> goal_3_out_gaa3(A, B, C)

The argument filtering Pi contains the following mapping:
goal_3_in_gaa3(x1, x2, x3)  =  goal_3_in_gaa1(x1)
node_33(x1, x2, x3)  =  node_32(x1, x3)
nil_0  =  nil_0
s_11(x1)  =  s_11(x1)
0_0  =  0_0
if_goal_3_in_1_gaa4(x1, x2, x3, x4)  =  if_goal_3_in_1_gaa1(x4)
s2t_2_in_ga2(x1, x2)  =  s2t_2_in_ga1(x1)
if_s2t_2_in_1_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_1_ga1(x4)
if_s2t_2_in_2_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_2_ga1(x4)
if_s2t_2_in_3_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_3_ga1(x4)
s2t_2_out_ga2(x1, x2)  =  s2t_2_out_ga1(x2)
if_goal_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_goal_3_in_2_gaa1(x5)
tapplast_3_in_gaa3(x1, x2, x3)  =  tapplast_3_in_gaa1(x1)
if_tapplast_3_in_1_gaa4(x1, x2, x3, x4)  =  if_tapplast_3_in_1_gaa1(x4)
tappend_3_in_gga3(x1, x2, x3)  =  tappend_3_in_gga2(x1, x2)
tappend_3_out_gga3(x1, x2, x3)  =  tappend_3_out_gga1(x3)
if_tappend_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_1_gga2(x3, x6)
if_tappend_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_2_gga2(x1, x6)
if_tapplast_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_tapplast_3_in_2_gaa1(x5)
tlast_2_in_ag2(x1, x2)  =  tlast_2_in_ag1(x2)
tlast_2_out_ag2(x1, x2)  =  tlast_2_out_ag
if_tlast_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_1_ag1(x5)
if_tlast_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_2_ag1(x5)
tapplast_3_out_gaa3(x1, x2, x3)  =  tapplast_3_out_gaa
goal_3_out_gaa3(x1, x2, x3)  =  goal_3_out_gaa
TAPPEND_3_IN_GGA3(x1, x2, x3)  =  TAPPEND_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> TAPPEND_3_IN_GGA3(T2, T3, U)
TAPPEND_3_IN_GGA3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> TAPPEND_3_IN_GGA3(T1, T3, U)

R is empty.
The argument filtering Pi contains the following mapping:
node_33(x1, x2, x3)  =  node_32(x1, x3)
TAPPEND_3_IN_GGA3(x1, x2, x3)  =  TAPPEND_3_IN_GGA2(x1, x2)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

TAPPEND_3_IN_GGA2(node_32(T1, T2), T3) -> TAPPEND_3_IN_GGA2(T2, T3)
TAPPEND_3_IN_GGA2(node_32(T1, T2), T3) -> TAPPEND_3_IN_GGA2(T1, T3)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {TAPPEND_3_IN_GGA2}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

S2T_2_IN_GA2(s_11(X), node_33(T, Y, nil_0)) -> S2T_2_IN_GA2(X, T)
S2T_2_IN_GA2(s_11(X), node_33(nil_0, Y, T)) -> S2T_2_IN_GA2(X, T)
S2T_2_IN_GA2(s_11(X), node_33(T, Y, T)) -> S2T_2_IN_GA2(X, T)

The TRS R consists of the following rules:

goal_3_in_gaa3(A, B, C) -> if_goal_3_in_1_gaa4(A, B, C, s2t_2_in_ga2(A, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, T)) -> if_s2t_2_in_1_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, T)) -> if_s2t_2_in_2_ga4(X, Y, T, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(T, Y, nil_0)) -> if_s2t_2_in_3_ga4(X, T, Y, s2t_2_in_ga2(X, T))
s2t_2_in_ga2(s_11(X), node_33(nil_0, Y, nil_0)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, nil_0))
s2t_2_in_ga2(0_0, nil_0) -> s2t_2_out_ga2(0_0, nil_0)
if_s2t_2_in_3_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, nil_0))
if_s2t_2_in_2_ga4(X, Y, T, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(nil_0, Y, T))
if_s2t_2_in_1_ga4(X, T, Y, s2t_2_out_ga2(X, T)) -> s2t_2_out_ga2(s_11(X), node_33(T, Y, T))
if_goal_3_in_1_gaa4(A, B, C, s2t_2_out_ga2(A, T)) -> if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_in_gaa3(T, B, C))
tapplast_3_in_gaa3(L, X, Last) -> if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_in_gga3(L, node_33(nil_0, X, nil_0), LX))
tappend_3_in_gga3(nil_0, T, T) -> tappend_3_out_gga3(nil_0, T, T)
tappend_3_in_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(nil_0, X, T2), T1, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2)) -> tappend_3_out_gga3(node_33(T1, X, nil_0), T2, node_33(T1, X, T2))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2)) -> if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T1, T3, U))
tappend_3_in_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U)) -> if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_in_gga3(T2, T3, U))
if_tappend_3_in_2_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T2, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(T1, X, U))
if_tappend_3_in_1_gga6(T1, X, T2, T3, U, tappend_3_out_gga3(T1, T3, U)) -> tappend_3_out_gga3(node_33(T1, X, T2), T3, node_33(U, X, T2))
if_tapplast_3_in_1_gaa4(L, X, Last, tappend_3_out_gga3(L, node_33(nil_0, X, nil_0), LX)) -> if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_in_ag2(Last, LX))
tlast_2_in_ag2(X, node_33(nil_0, X, nil_0)) -> tlast_2_out_ag2(X, node_33(nil_0, X, nil_0))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_in_ag2(X, L))
tlast_2_in_ag2(X, node_33(L, H, R)) -> if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_in_ag2(X, R))
if_tlast_2_in_2_ag5(X, L, H, R, tlast_2_out_ag2(X, R)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tlast_2_in_1_ag5(X, L, H, R, tlast_2_out_ag2(X, L)) -> tlast_2_out_ag2(X, node_33(L, H, R))
if_tapplast_3_in_2_gaa5(L, X, Last, LX, tlast_2_out_ag2(Last, LX)) -> tapplast_3_out_gaa3(L, X, Last)
if_goal_3_in_2_gaa5(A, B, C, T, tapplast_3_out_gaa3(T, B, C)) -> goal_3_out_gaa3(A, B, C)

The argument filtering Pi contains the following mapping:
goal_3_in_gaa3(x1, x2, x3)  =  goal_3_in_gaa1(x1)
node_33(x1, x2, x3)  =  node_32(x1, x3)
nil_0  =  nil_0
s_11(x1)  =  s_11(x1)
0_0  =  0_0
if_goal_3_in_1_gaa4(x1, x2, x3, x4)  =  if_goal_3_in_1_gaa1(x4)
s2t_2_in_ga2(x1, x2)  =  s2t_2_in_ga1(x1)
if_s2t_2_in_1_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_1_ga1(x4)
if_s2t_2_in_2_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_2_ga1(x4)
if_s2t_2_in_3_ga4(x1, x2, x3, x4)  =  if_s2t_2_in_3_ga1(x4)
s2t_2_out_ga2(x1, x2)  =  s2t_2_out_ga1(x2)
if_goal_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_goal_3_in_2_gaa1(x5)
tapplast_3_in_gaa3(x1, x2, x3)  =  tapplast_3_in_gaa1(x1)
if_tapplast_3_in_1_gaa4(x1, x2, x3, x4)  =  if_tapplast_3_in_1_gaa1(x4)
tappend_3_in_gga3(x1, x2, x3)  =  tappend_3_in_gga2(x1, x2)
tappend_3_out_gga3(x1, x2, x3)  =  tappend_3_out_gga1(x3)
if_tappend_3_in_1_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_1_gga2(x3, x6)
if_tappend_3_in_2_gga6(x1, x2, x3, x4, x5, x6)  =  if_tappend_3_in_2_gga2(x1, x6)
if_tapplast_3_in_2_gaa5(x1, x2, x3, x4, x5)  =  if_tapplast_3_in_2_gaa1(x5)
tlast_2_in_ag2(x1, x2)  =  tlast_2_in_ag1(x2)
tlast_2_out_ag2(x1, x2)  =  tlast_2_out_ag
if_tlast_2_in_1_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_1_ag1(x5)
if_tlast_2_in_2_ag5(x1, x2, x3, x4, x5)  =  if_tlast_2_in_2_ag1(x5)
tapplast_3_out_gaa3(x1, x2, x3)  =  tapplast_3_out_gaa
goal_3_out_gaa3(x1, x2, x3)  =  goal_3_out_gaa
S2T_2_IN_GA2(x1, x2)  =  S2T_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting we can delete all non-usable rules from R.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

S2T_2_IN_GA2(s_11(X), node_33(T, Y, nil_0)) -> S2T_2_IN_GA2(X, T)
S2T_2_IN_GA2(s_11(X), node_33(nil_0, Y, T)) -> S2T_2_IN_GA2(X, T)
S2T_2_IN_GA2(s_11(X), node_33(T, Y, T)) -> S2T_2_IN_GA2(X, T)

R is empty.
The argument filtering Pi contains the following mapping:
node_33(x1, x2, x3)  =  node_32(x1, x3)
nil_0  =  nil_0
s_11(x1)  =  s_11(x1)
S2T_2_IN_GA2(x1, x2)  =  S2T_2_IN_GA1(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem into ordinary QDP problem by application of Pi.

↳ PROLOG
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

S2T_2_IN_GA1(s_11(X)) -> S2T_2_IN_GA1(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The head symbols of this DP problem are {S2T_2_IN_GA1}.
By using the subterm criterion together with the size-change analysis we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: